This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of TakeutiZaring p. 67. Definition 2.6 of Schloeder p. 4. (Contributed by NM, 1-Jan-2005) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oelim | |- ( ( ( A e. On /\ ( B e. C /\ Lim B ) ) /\ (/) e. A ) -> ( A ^o B ) = U_ x e. B ( A ^o x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | |- ( ( B e. C /\ Lim B ) -> B e. On ) |
|
| 2 | simpr | |- ( ( B e. C /\ Lim B ) -> Lim B ) |
|
| 3 | 1 2 | jca | |- ( ( B e. C /\ Lim B ) -> ( B e. On /\ Lim B ) ) |
| 4 | rdglim2a | |- ( ( B e. On /\ Lim B ) -> ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) |
|
| 5 | 4 | ad2antlr | |- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ (/) e. A ) -> ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) |
| 6 | oevn0 | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` B ) ) |
|
| 7 | onelon | |- ( ( B e. On /\ x e. B ) -> x e. On ) |
|
| 8 | oevn0 | |- ( ( ( A e. On /\ x e. On ) /\ (/) e. A ) -> ( A ^o x ) = ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) |
|
| 9 | 7 8 | sylanl2 | |- ( ( ( A e. On /\ ( B e. On /\ x e. B ) ) /\ (/) e. A ) -> ( A ^o x ) = ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) |
| 10 | 9 | exp42 | |- ( A e. On -> ( B e. On -> ( x e. B -> ( (/) e. A -> ( A ^o x ) = ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) ) ) ) |
| 11 | 10 | com34 | |- ( A e. On -> ( B e. On -> ( (/) e. A -> ( x e. B -> ( A ^o x ) = ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) ) ) ) |
| 12 | 11 | imp41 | |- ( ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) /\ x e. B ) -> ( A ^o x ) = ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) |
| 13 | 12 | iuneq2dv | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> U_ x e. B ( A ^o x ) = U_ x e. B ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) |
| 14 | 6 13 | eqeq12d | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( ( A ^o B ) = U_ x e. B ( A ^o x ) <-> ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) ) |
| 15 | 14 | adantlrr | |- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ (/) e. A ) -> ( ( A ^o B ) = U_ x e. B ( A ^o x ) <-> ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` B ) = U_ x e. B ( rec ( ( y e. _V |-> ( y .o A ) ) , 1o ) ` x ) ) ) |
| 16 | 5 15 | mpbird | |- ( ( ( A e. On /\ ( B e. On /\ Lim B ) ) /\ (/) e. A ) -> ( A ^o B ) = U_ x e. B ( A ^o x ) ) |
| 17 | 3 16 | sylanl2 | |- ( ( ( A e. On /\ ( B e. C /\ Lim B ) ) /\ (/) e. A ) -> ( A ^o B ) = U_ x e. B ( A ^o x ) ) |