This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtr2 | |- ( ( Ord A /\ Ord C ) -> ( ( A C_ B /\ B e. C ) -> A e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord | |- ( ( Ord C /\ B e. C ) -> Ord B ) |
|
| 2 | 1 | ex | |- ( Ord C -> ( B e. C -> Ord B ) ) |
| 3 | 2 | ancld | |- ( Ord C -> ( B e. C -> ( B e. C /\ Ord B ) ) ) |
| 4 | 3 | anc2li | |- ( Ord C -> ( B e. C -> ( Ord C /\ ( B e. C /\ Ord B ) ) ) ) |
| 5 | ordelpss | |- ( ( Ord B /\ Ord C ) -> ( B e. C <-> B C. C ) ) |
|
| 6 | sspsstr | |- ( ( A C_ B /\ B C. C ) -> A C. C ) |
|
| 7 | 6 | expcom | |- ( B C. C -> ( A C_ B -> A C. C ) ) |
| 8 | 5 7 | biimtrdi | |- ( ( Ord B /\ Ord C ) -> ( B e. C -> ( A C_ B -> A C. C ) ) ) |
| 9 | 8 | expcom | |- ( Ord C -> ( Ord B -> ( B e. C -> ( A C_ B -> A C. C ) ) ) ) |
| 10 | 9 | com23 | |- ( Ord C -> ( B e. C -> ( Ord B -> ( A C_ B -> A C. C ) ) ) ) |
| 11 | 10 | imp32 | |- ( ( Ord C /\ ( B e. C /\ Ord B ) ) -> ( A C_ B -> A C. C ) ) |
| 12 | 11 | com12 | |- ( A C_ B -> ( ( Ord C /\ ( B e. C /\ Ord B ) ) -> A C. C ) ) |
| 13 | 4 12 | syl9 | |- ( Ord C -> ( A C_ B -> ( B e. C -> A C. C ) ) ) |
| 14 | 13 | impd | |- ( Ord C -> ( ( A C_ B /\ B e. C ) -> A C. C ) ) |
| 15 | 14 | adantl | |- ( ( Ord A /\ Ord C ) -> ( ( A C_ B /\ B e. C ) -> A C. C ) ) |
| 16 | ordelpss | |- ( ( Ord A /\ Ord C ) -> ( A e. C <-> A C. C ) ) |
|
| 17 | 15 16 | sylibrd | |- ( ( Ord A /\ Ord C ) -> ( ( A C_ B /\ B e. C ) -> A e. C ) ) |