This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrabf.1 | |- F/_ x A |
|
| elrabf.2 | |- F/_ x B |
||
| elrabf.3 | |- F/ x ps |
||
| elrabf.4 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | elrabf | |- ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabf.1 | |- F/_ x A |
|
| 2 | elrabf.2 | |- F/_ x B |
|
| 3 | elrabf.3 | |- F/ x ps |
|
| 4 | elrabf.4 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 5 | elex | |- ( A e. { x e. B | ph } -> A e. _V ) |
|
| 6 | elex | |- ( A e. B -> A e. _V ) |
|
| 7 | 6 | adantr | |- ( ( A e. B /\ ps ) -> A e. _V ) |
| 8 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 9 | 8 | eleq2i | |- ( A e. { x e. B | ph } <-> A e. { x | ( x e. B /\ ph ) } ) |
| 10 | 1 2 | nfel | |- F/ x A e. B |
| 11 | 10 3 | nfan | |- F/ x ( A e. B /\ ps ) |
| 12 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 13 | 12 4 | anbi12d | |- ( x = A -> ( ( x e. B /\ ph ) <-> ( A e. B /\ ps ) ) ) |
| 14 | 1 11 13 | elabgf | |- ( A e. _V -> ( A e. { x | ( x e. B /\ ph ) } <-> ( A e. B /\ ps ) ) ) |
| 15 | 9 14 | bitrid | |- ( A e. _V -> ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) ) ) |
| 16 | 5 7 15 | pm5.21nii | |- ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) ) |