This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of addition. (Contributed by NM, 9-Nov-2002) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaword1 | |- ( ( A e. _om /\ B e. _om ) -> A C_ ( A +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nna0 | |- ( A e. _om -> ( A +o (/) ) = A ) |
|
| 2 | 1 | adantr | |- ( ( A e. _om /\ B e. _om ) -> ( A +o (/) ) = A ) |
| 3 | 0ss | |- (/) C_ B |
|
| 4 | peano1 | |- (/) e. _om |
|
| 5 | nnaword | |- ( ( (/) e. _om /\ B e. _om /\ A e. _om ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
|
| 6 | 5 | 3com13 | |- ( ( A e. _om /\ B e. _om /\ (/) e. _om ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
| 7 | 4 6 | mp3an3 | |- ( ( A e. _om /\ B e. _om ) -> ( (/) C_ B <-> ( A +o (/) ) C_ ( A +o B ) ) ) |
| 8 | 3 7 | mpbii | |- ( ( A e. _om /\ B e. _om ) -> ( A +o (/) ) C_ ( A +o B ) ) |
| 9 | 2 8 | eqsstrrd | |- ( ( A e. _om /\ B e. _om ) -> A C_ ( A +o B ) ) |