This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for ordering. Compare Exercise 23 of Enderton p. 88. (Contributed by NM, 5-Dec-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaordex | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | |- ( B e. _om -> B e. On ) |
|
| 2 | 1 | adantl | |- ( ( A e. _om /\ B e. _om ) -> B e. On ) |
| 3 | onelss | |- ( B e. On -> ( A e. B -> A C_ B ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B -> A C_ B ) ) |
| 5 | nnawordex | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B <-> E. x e. _om ( A +o x ) = B ) ) |
|
| 6 | 4 5 | sylibd | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B -> E. x e. _om ( A +o x ) = B ) ) |
| 7 | simplr | |- ( ( ( A e. _om /\ A e. B ) /\ x e. _om ) -> A e. B ) |
|
| 8 | eleq2 | |- ( ( A +o x ) = B -> ( A e. ( A +o x ) <-> A e. B ) ) |
|
| 9 | 7 8 | syl5ibrcom | |- ( ( ( A e. _om /\ A e. B ) /\ x e. _om ) -> ( ( A +o x ) = B -> A e. ( A +o x ) ) ) |
| 10 | peano1 | |- (/) e. _om |
|
| 11 | nnaord | |- ( ( (/) e. _om /\ x e. _om /\ A e. _om ) -> ( (/) e. x <-> ( A +o (/) ) e. ( A +o x ) ) ) |
|
| 12 | 10 11 | mp3an1 | |- ( ( x e. _om /\ A e. _om ) -> ( (/) e. x <-> ( A +o (/) ) e. ( A +o x ) ) ) |
| 13 | 12 | ancoms | |- ( ( A e. _om /\ x e. _om ) -> ( (/) e. x <-> ( A +o (/) ) e. ( A +o x ) ) ) |
| 14 | nna0 | |- ( A e. _om -> ( A +o (/) ) = A ) |
|
| 15 | 14 | adantr | |- ( ( A e. _om /\ x e. _om ) -> ( A +o (/) ) = A ) |
| 16 | 15 | eleq1d | |- ( ( A e. _om /\ x e. _om ) -> ( ( A +o (/) ) e. ( A +o x ) <-> A e. ( A +o x ) ) ) |
| 17 | 13 16 | bitrd | |- ( ( A e. _om /\ x e. _om ) -> ( (/) e. x <-> A e. ( A +o x ) ) ) |
| 18 | 17 | adantlr | |- ( ( ( A e. _om /\ A e. B ) /\ x e. _om ) -> ( (/) e. x <-> A e. ( A +o x ) ) ) |
| 19 | 9 18 | sylibrd | |- ( ( ( A e. _om /\ A e. B ) /\ x e. _om ) -> ( ( A +o x ) = B -> (/) e. x ) ) |
| 20 | 19 | ancrd | |- ( ( ( A e. _om /\ A e. B ) /\ x e. _om ) -> ( ( A +o x ) = B -> ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| 21 | 20 | reximdva | |- ( ( A e. _om /\ A e. B ) -> ( E. x e. _om ( A +o x ) = B -> E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| 22 | 21 | ex | |- ( A e. _om -> ( A e. B -> ( E. x e. _om ( A +o x ) = B -> E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
| 23 | 22 | adantr | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B -> ( E. x e. _om ( A +o x ) = B -> E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) ) ) ) |
| 24 | 6 23 | mpdd | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B -> E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) ) ) |
| 25 | 17 | biimpa | |- ( ( ( A e. _om /\ x e. _om ) /\ (/) e. x ) -> A e. ( A +o x ) ) |
| 26 | 25 8 | syl5ibcom | |- ( ( ( A e. _om /\ x e. _om ) /\ (/) e. x ) -> ( ( A +o x ) = B -> A e. B ) ) |
| 27 | 26 | expimpd | |- ( ( A e. _om /\ x e. _om ) -> ( ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) |
| 28 | 27 | rexlimdva | |- ( A e. _om -> ( E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) |
| 29 | 28 | adantr | |- ( ( A e. _om /\ B e. _om ) -> ( E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) -> A e. B ) ) |
| 30 | 24 29 | impbid | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> E. x e. _om ( (/) e. x /\ ( A +o x ) = B ) ) ) |