This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mplsubg and mpllss . (Contributed by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubg.s | |- S = ( I mPwSer R ) |
|
| mplsubg.p | |- P = ( I mPoly R ) |
||
| mplsubg.u | |- U = ( Base ` P ) |
||
| mplsubg.i | |- ( ph -> I e. W ) |
||
| Assertion | mplsubglem2 | |- ( ph -> U = { g e. ( Base ` S ) | ( g supp ( 0g ` R ) ) e. Fin } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | |- S = ( I mPwSer R ) |
|
| 2 | mplsubg.p | |- P = ( I mPoly R ) |
|
| 3 | mplsubg.u | |- U = ( Base ` P ) |
|
| 4 | mplsubg.i | |- ( ph -> I e. W ) |
|
| 5 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 2 1 5 6 3 | mplbas | |- U = { g e. ( Base ` S ) | g finSupp ( 0g ` R ) } |
| 8 | 1 5 | psrelbasfun | |- ( g e. ( Base ` S ) -> Fun g ) |
| 9 | 8 | adantl | |- ( ( ph /\ g e. ( Base ` S ) ) -> Fun g ) |
| 10 | simpr | |- ( ( ph /\ g e. ( Base ` S ) ) -> g e. ( Base ` S ) ) |
|
| 11 | fvexd | |- ( ( ph /\ g e. ( Base ` S ) ) -> ( 0g ` R ) e. _V ) |
|
| 12 | funisfsupp | |- ( ( Fun g /\ g e. ( Base ` S ) /\ ( 0g ` R ) e. _V ) -> ( g finSupp ( 0g ` R ) <-> ( g supp ( 0g ` R ) ) e. Fin ) ) |
|
| 13 | 9 10 11 12 | syl3anc | |- ( ( ph /\ g e. ( Base ` S ) ) -> ( g finSupp ( 0g ` R ) <-> ( g supp ( 0g ` R ) ) e. Fin ) ) |
| 14 | 13 | rabbidva | |- ( ph -> { g e. ( Base ` S ) | g finSupp ( 0g ` R ) } = { g e. ( Base ` S ) | ( g supp ( 0g ` R ) ) e. Fin } ) |
| 15 | 7 14 | eqtrid | |- ( ph -> U = { g e. ( Base ` S ) | ( g supp ( 0g ` R ) ) e. Fin } ) |