This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islssd.f | |- ( ph -> F = ( Scalar ` W ) ) |
|
| islssd.b | |- ( ph -> B = ( Base ` F ) ) |
||
| islssd.v | |- ( ph -> V = ( Base ` W ) ) |
||
| islssd.p | |- ( ph -> .+ = ( +g ` W ) ) |
||
| islssd.t | |- ( ph -> .x. = ( .s ` W ) ) |
||
| islssd.s | |- ( ph -> S = ( LSubSp ` W ) ) |
||
| islssd.u | |- ( ph -> U C_ V ) |
||
| islssd.z | |- ( ph -> U =/= (/) ) |
||
| islssd.c | |- ( ( ph /\ ( x e. B /\ a e. U /\ b e. U ) ) -> ( ( x .x. a ) .+ b ) e. U ) |
||
| Assertion | islssd | |- ( ph -> U e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssd.f | |- ( ph -> F = ( Scalar ` W ) ) |
|
| 2 | islssd.b | |- ( ph -> B = ( Base ` F ) ) |
|
| 3 | islssd.v | |- ( ph -> V = ( Base ` W ) ) |
|
| 4 | islssd.p | |- ( ph -> .+ = ( +g ` W ) ) |
|
| 5 | islssd.t | |- ( ph -> .x. = ( .s ` W ) ) |
|
| 6 | islssd.s | |- ( ph -> S = ( LSubSp ` W ) ) |
|
| 7 | islssd.u | |- ( ph -> U C_ V ) |
|
| 8 | islssd.z | |- ( ph -> U =/= (/) ) |
|
| 9 | islssd.c | |- ( ( ph /\ ( x e. B /\ a e. U /\ b e. U ) ) -> ( ( x .x. a ) .+ b ) e. U ) |
|
| 10 | 7 3 | sseqtrd | |- ( ph -> U C_ ( Base ` W ) ) |
| 11 | 9 | 3exp2 | |- ( ph -> ( x e. B -> ( a e. U -> ( b e. U -> ( ( x .x. a ) .+ b ) e. U ) ) ) ) |
| 12 | 11 | imp43 | |- ( ( ( ph /\ x e. B ) /\ ( a e. U /\ b e. U ) ) -> ( ( x .x. a ) .+ b ) e. U ) |
| 13 | 12 | ralrimivva | |- ( ( ph /\ x e. B ) -> A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U ) |
| 14 | 13 | ex | |- ( ph -> ( x e. B -> A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U ) ) |
| 15 | 1 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) |
| 16 | 2 15 | eqtrd | |- ( ph -> B = ( Base ` ( Scalar ` W ) ) ) |
| 17 | 16 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 18 | 4 | oveqd | |- ( ph -> ( ( x .x. a ) .+ b ) = ( ( x .x. a ) ( +g ` W ) b ) ) |
| 19 | 5 | oveqd | |- ( ph -> ( x .x. a ) = ( x ( .s ` W ) a ) ) |
| 20 | 19 | oveq1d | |- ( ph -> ( ( x .x. a ) ( +g ` W ) b ) = ( ( x ( .s ` W ) a ) ( +g ` W ) b ) ) |
| 21 | 18 20 | eqtrd | |- ( ph -> ( ( x .x. a ) .+ b ) = ( ( x ( .s ` W ) a ) ( +g ` W ) b ) ) |
| 22 | 21 | eleq1d | |- ( ph -> ( ( ( x .x. a ) .+ b ) e. U <-> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 23 | 22 | 2ralbidv | |- ( ph -> ( A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U <-> A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 24 | 14 17 23 | 3imtr3d | |- ( ph -> ( x e. ( Base ` ( Scalar ` W ) ) -> A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 25 | 24 | ralrimiv | |- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) |
| 26 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 27 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 28 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 29 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 30 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 31 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 32 | 26 27 28 29 30 31 | islss | |- ( U e. ( LSubSp ` W ) <-> ( U C_ ( Base ` W ) /\ U =/= (/) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. a e. U A. b e. U ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. U ) ) |
| 33 | 10 8 25 32 | syl3anbrc | |- ( ph -> U e. ( LSubSp ` W ) ) |
| 34 | 33 6 | eleqtrrd | |- ( ph -> U e. S ) |