This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetfval.d | |- D = ( N maDet R ) |
|
| mdetfval.a | |- A = ( N Mat R ) |
||
| mdetfval.b | |- B = ( Base ` A ) |
||
| mdetfval.p | |- P = ( Base ` ( SymGrp ` N ) ) |
||
| mdetfval.y | |- Y = ( ZRHom ` R ) |
||
| mdetfval.s | |- S = ( pmSgn ` N ) |
||
| mdetfval.t | |- .x. = ( .r ` R ) |
||
| mdetfval.u | |- U = ( mulGrp ` R ) |
||
| Assertion | mdetfval | |- D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetfval.d | |- D = ( N maDet R ) |
|
| 2 | mdetfval.a | |- A = ( N Mat R ) |
|
| 3 | mdetfval.b | |- B = ( Base ` A ) |
|
| 4 | mdetfval.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 5 | mdetfval.y | |- Y = ( ZRHom ` R ) |
|
| 6 | mdetfval.s | |- S = ( pmSgn ` N ) |
|
| 7 | mdetfval.t | |- .x. = ( .r ` R ) |
|
| 8 | mdetfval.u | |- U = ( mulGrp ` R ) |
|
| 9 | oveq12 | |- ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) ) |
|
| 10 | 9 2 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( n Mat r ) = A ) |
| 11 | 10 | fveq2d | |- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = ( Base ` A ) ) |
| 12 | 11 3 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( Base ` ( n Mat r ) ) = B ) |
| 13 | simpr | |- ( ( n = N /\ r = R ) -> r = R ) |
|
| 14 | simpl | |- ( ( n = N /\ r = R ) -> n = N ) |
|
| 15 | 14 | fveq2d | |- ( ( n = N /\ r = R ) -> ( SymGrp ` n ) = ( SymGrp ` N ) ) |
| 16 | 15 | fveq2d | |- ( ( n = N /\ r = R ) -> ( Base ` ( SymGrp ` n ) ) = ( Base ` ( SymGrp ` N ) ) ) |
| 17 | 16 4 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( Base ` ( SymGrp ` n ) ) = P ) |
| 18 | fveq2 | |- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
|
| 19 | 18 | adantl | |- ( ( n = N /\ r = R ) -> ( .r ` r ) = ( .r ` R ) ) |
| 20 | 19 7 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( .r ` r ) = .x. ) |
| 21 | 13 | fveq2d | |- ( ( n = N /\ r = R ) -> ( ZRHom ` r ) = ( ZRHom ` R ) ) |
| 22 | 21 5 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( ZRHom ` r ) = Y ) |
| 23 | fveq2 | |- ( n = N -> ( pmSgn ` n ) = ( pmSgn ` N ) ) |
|
| 24 | 23 | adantr | |- ( ( n = N /\ r = R ) -> ( pmSgn ` n ) = ( pmSgn ` N ) ) |
| 25 | 24 6 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( pmSgn ` n ) = S ) |
| 26 | 22 25 | coeq12d | |- ( ( n = N /\ r = R ) -> ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) = ( Y o. S ) ) |
| 27 | 26 | fveq1d | |- ( ( n = N /\ r = R ) -> ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) = ( ( Y o. S ) ` p ) ) |
| 28 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 29 | 28 | adantl | |- ( ( n = N /\ r = R ) -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
| 30 | 29 8 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( mulGrp ` r ) = U ) |
| 31 | 14 | mpteq1d | |- ( ( n = N /\ r = R ) -> ( x e. n |-> ( ( p ` x ) m x ) ) = ( x e. N |-> ( ( p ` x ) m x ) ) ) |
| 32 | 30 31 | oveq12d | |- ( ( n = N /\ r = R ) -> ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) = ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) |
| 33 | 20 27 32 | oveq123d | |- ( ( n = N /\ r = R ) -> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) = ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) |
| 34 | 17 33 | mpteq12dv | |- ( ( n = N /\ r = R ) -> ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) = ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) |
| 35 | 13 34 | oveq12d | |- ( ( n = N /\ r = R ) -> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) = ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 36 | 12 35 | mpteq12dv | |- ( ( n = N /\ r = R ) -> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 37 | df-mdet | |- maDet = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( r gsum ( p e. ( Base ` ( SymGrp ` n ) ) |-> ( ( ( ( ZRHom ` r ) o. ( pmSgn ` n ) ) ` p ) ( .r ` r ) ( ( mulGrp ` r ) gsum ( x e. n |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
|
| 38 | 3 | fvexi | |- B e. _V |
| 39 | 38 | mptex | |- ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) e. _V |
| 40 | 36 37 39 | ovmpoa | |- ( ( N e. _V /\ R e. _V ) -> ( N maDet R ) = ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 41 | 37 | reldmmpo | |- Rel dom maDet |
| 42 | 41 | ovprc | |- ( -. ( N e. _V /\ R e. _V ) -> ( N maDet R ) = (/) ) |
| 43 | mpt0 | |- ( m e. (/) |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = (/) |
|
| 44 | 42 43 | eqtr4di | |- ( -. ( N e. _V /\ R e. _V ) -> ( N maDet R ) = ( m e. (/) |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 45 | df-mat | |- Mat = ( y e. Fin , z e. _V |-> ( ( z freeLMod ( y X. y ) ) sSet <. ( .r ` ndx ) , ( z maMul <. y , y , y >. ) >. ) ) |
|
| 46 | 45 | reldmmpo | |- Rel dom Mat |
| 47 | 46 | ovprc | |- ( -. ( N e. _V /\ R e. _V ) -> ( N Mat R ) = (/) ) |
| 48 | 2 47 | eqtrid | |- ( -. ( N e. _V /\ R e. _V ) -> A = (/) ) |
| 49 | 48 | fveq2d | |- ( -. ( N e. _V /\ R e. _V ) -> ( Base ` A ) = ( Base ` (/) ) ) |
| 50 | base0 | |- (/) = ( Base ` (/) ) |
|
| 51 | 49 3 50 | 3eqtr4g | |- ( -. ( N e. _V /\ R e. _V ) -> B = (/) ) |
| 52 | 51 | mpteq1d | |- ( -. ( N e. _V /\ R e. _V ) -> ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. (/) |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 53 | 44 52 | eqtr4d | |- ( -. ( N e. _V /\ R e. _V ) -> ( N maDet R ) = ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 54 | 40 53 | pm2.61i | |- ( N maDet R ) = ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 55 | 1 54 | eqtri | |- D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |