This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function for 0-dimensional matrices on a given ring is a bijection from the singleton containing the empty set (empty matrix) onto the singleton containing the unity element of that ring. (Contributed by AV, 28-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mdet0f1o | |- ( R e. Ring -> ( (/) maDet R ) : { (/) } -1-1-onto-> { ( 1r ` R ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet0pr | |- ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | fvex | |- ( 1r ` R ) e. _V |
|
| 4 | 2 3 | f1osn | |- { <. (/) , ( 1r ` R ) >. } : { (/) } -1-1-onto-> { ( 1r ` R ) } |
| 5 | f1oeq1 | |- ( ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } -> ( ( (/) maDet R ) : { (/) } -1-1-onto-> { ( 1r ` R ) } <-> { <. (/) , ( 1r ` R ) >. } : { (/) } -1-1-onto-> { ( 1r ` R ) } ) ) |
|
| 6 | 4 5 | mpbiri | |- ( ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } -> ( (/) maDet R ) : { (/) } -1-1-onto-> { ( 1r ` R ) } ) |
| 7 | 1 6 | syl | |- ( R e. Ring -> ( (/) maDet R ) : { (/) } -1-1-onto-> { ( 1r ` R ) } ) |