This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psgn0fv0 | |- ( ( pmSgn ` (/) ) ` (/) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | wrd0 | |- (/) e. Word ran ( pmTrsp ` (/) ) |
|
| 3 | eqid | |- ( 0g ` ( SymGrp ` (/) ) ) = ( 0g ` ( SymGrp ` (/) ) ) |
|
| 4 | 3 | gsum0 | |- ( ( SymGrp ` (/) ) gsum (/) ) = ( 0g ` ( SymGrp ` (/) ) ) |
| 5 | eqid | |- ( SymGrp ` (/) ) = ( SymGrp ` (/) ) |
|
| 6 | 5 | symgid | |- ( (/) e. _V -> ( _I |` (/) ) = ( 0g ` ( SymGrp ` (/) ) ) ) |
| 7 | 1 6 | ax-mp | |- ( _I |` (/) ) = ( 0g ` ( SymGrp ` (/) ) ) |
| 8 | res0 | |- ( _I |` (/) ) = (/) |
|
| 9 | 7 8 | eqtr3i | |- ( 0g ` ( SymGrp ` (/) ) ) = (/) |
| 10 | 9 | a1i | |- ( ( (/) e. _V /\ (/) e. Word ran ( pmTrsp ` (/) ) ) -> ( 0g ` ( SymGrp ` (/) ) ) = (/) ) |
| 11 | 4 10 | eqtr2id | |- ( ( (/) e. _V /\ (/) e. Word ran ( pmTrsp ` (/) ) ) -> (/) = ( ( SymGrp ` (/) ) gsum (/) ) ) |
| 12 | 11 | fveq2d | |- ( ( (/) e. _V /\ (/) e. Word ran ( pmTrsp ` (/) ) ) -> ( ( pmSgn ` (/) ) ` (/) ) = ( ( pmSgn ` (/) ) ` ( ( SymGrp ` (/) ) gsum (/) ) ) ) |
| 13 | eqid | |- ran ( pmTrsp ` (/) ) = ran ( pmTrsp ` (/) ) |
|
| 14 | eqid | |- ( pmSgn ` (/) ) = ( pmSgn ` (/) ) |
|
| 15 | 5 13 14 | psgnvalii | |- ( ( (/) e. _V /\ (/) e. Word ran ( pmTrsp ` (/) ) ) -> ( ( pmSgn ` (/) ) ` ( ( SymGrp ` (/) ) gsum (/) ) ) = ( -u 1 ^ ( # ` (/) ) ) ) |
| 16 | hash0 | |- ( # ` (/) ) = 0 |
|
| 17 | 16 | oveq2i | |- ( -u 1 ^ ( # ` (/) ) ) = ( -u 1 ^ 0 ) |
| 18 | neg1cn | |- -u 1 e. CC |
|
| 19 | exp0 | |- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
|
| 20 | 18 19 | ax-mp | |- ( -u 1 ^ 0 ) = 1 |
| 21 | 17 20 | eqtri | |- ( -u 1 ^ ( # ` (/) ) ) = 1 |
| 22 | 21 | a1i | |- ( ( (/) e. _V /\ (/) e. Word ran ( pmTrsp ` (/) ) ) -> ( -u 1 ^ ( # ` (/) ) ) = 1 ) |
| 23 | 12 15 22 | 3eqtrd | |- ( ( (/) e. _V /\ (/) e. Word ran ( pmTrsp ` (/) ) ) -> ( ( pmSgn ` (/) ) ` (/) ) = 1 ) |
| 24 | 1 2 23 | mp2an | |- ( ( pmSgn ` (/) ) ` (/) ) = 1 |