This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a singleton function in maps-to notation. Version of fmptsn allowing the value B to depend on the variable x . (Contributed by AV, 27-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fmptsng.1 | |- ( x = A -> B = C ) |
|
| Assertion | fmptsng | |- ( ( A e. V /\ C e. W ) -> { <. A , C >. } = ( x e. { A } |-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptsng.1 | |- ( x = A -> B = C ) |
|
| 2 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 3 | 2 | bicomi | |- ( x = A <-> x e. { A } ) |
| 4 | 3 | anbi1i | |- ( ( x = A /\ y = B ) <-> ( x e. { A } /\ y = B ) ) |
| 5 | 4 | opabbii | |- { <. x , y >. | ( x = A /\ y = B ) } = { <. x , y >. | ( x e. { A } /\ y = B ) } |
| 6 | velsn | |- ( p e. { <. A , C >. } <-> p = <. A , C >. ) |
|
| 7 | eqidd | |- ( ( A e. V /\ C e. W ) -> A = A ) |
|
| 8 | eqidd | |- ( ( A e. V /\ C e. W ) -> C = C ) |
|
| 9 | eqeq1 | |- ( x = A -> ( x = A <-> A = A ) ) |
|
| 10 | 9 | adantr | |- ( ( x = A /\ y = C ) -> ( x = A <-> A = A ) ) |
| 11 | eqeq1 | |- ( y = C -> ( y = B <-> C = B ) ) |
|
| 12 | 1 | eqeq2d | |- ( x = A -> ( C = B <-> C = C ) ) |
| 13 | 11 12 | sylan9bbr | |- ( ( x = A /\ y = C ) -> ( y = B <-> C = C ) ) |
| 14 | 10 13 | anbi12d | |- ( ( x = A /\ y = C ) -> ( ( x = A /\ y = B ) <-> ( A = A /\ C = C ) ) ) |
| 15 | 14 | opelopabga | |- ( ( A e. V /\ C e. W ) -> ( <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } <-> ( A = A /\ C = C ) ) ) |
| 16 | 7 8 15 | mpbir2and | |- ( ( A e. V /\ C e. W ) -> <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } ) |
| 17 | eleq1 | |- ( p = <. A , C >. -> ( p e. { <. x , y >. | ( x = A /\ y = B ) } <-> <. A , C >. e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
|
| 18 | 16 17 | syl5ibrcom | |- ( ( A e. V /\ C e. W ) -> ( p = <. A , C >. -> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 19 | 6 18 | biimtrid | |- ( ( A e. V /\ C e. W ) -> ( p e. { <. A , C >. } -> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 20 | elopab | |- ( p e. { <. x , y >. | ( x = A /\ y = B ) } <-> E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) ) |
|
| 21 | opeq12 | |- ( ( x = A /\ y = B ) -> <. x , y >. = <. A , B >. ) |
|
| 22 | 21 | eqeq2d | |- ( ( x = A /\ y = B ) -> ( p = <. x , y >. <-> p = <. A , B >. ) ) |
| 23 | 1 | adantr | |- ( ( x = A /\ y = B ) -> B = C ) |
| 24 | 23 | opeq2d | |- ( ( x = A /\ y = B ) -> <. A , B >. = <. A , C >. ) |
| 25 | opex | |- <. A , C >. e. _V |
|
| 26 | 25 | snid | |- <. A , C >. e. { <. A , C >. } |
| 27 | 24 26 | eqeltrdi | |- ( ( x = A /\ y = B ) -> <. A , B >. e. { <. A , C >. } ) |
| 28 | eleq1 | |- ( p = <. A , B >. -> ( p e. { <. A , C >. } <-> <. A , B >. e. { <. A , C >. } ) ) |
|
| 29 | 27 28 | syl5ibrcom | |- ( ( x = A /\ y = B ) -> ( p = <. A , B >. -> p e. { <. A , C >. } ) ) |
| 30 | 22 29 | sylbid | |- ( ( x = A /\ y = B ) -> ( p = <. x , y >. -> p e. { <. A , C >. } ) ) |
| 31 | 30 | impcom | |- ( ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) |
| 32 | 31 | exlimivv | |- ( E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) |
| 33 | 32 | a1i | |- ( ( A e. V /\ C e. W ) -> ( E. x E. y ( p = <. x , y >. /\ ( x = A /\ y = B ) ) -> p e. { <. A , C >. } ) ) |
| 34 | 20 33 | biimtrid | |- ( ( A e. V /\ C e. W ) -> ( p e. { <. x , y >. | ( x = A /\ y = B ) } -> p e. { <. A , C >. } ) ) |
| 35 | 19 34 | impbid | |- ( ( A e. V /\ C e. W ) -> ( p e. { <. A , C >. } <-> p e. { <. x , y >. | ( x = A /\ y = B ) } ) ) |
| 36 | 35 | eqrdv | |- ( ( A e. V /\ C e. W ) -> { <. A , C >. } = { <. x , y >. | ( x = A /\ y = B ) } ) |
| 37 | df-mpt | |- ( x e. { A } |-> B ) = { <. x , y >. | ( x e. { A } /\ y = B ) } |
|
| 38 | 37 | a1i | |- ( ( A e. V /\ C e. W ) -> ( x e. { A } |-> B ) = { <. x , y >. | ( x e. { A } /\ y = B ) } ) |
| 39 | 5 36 38 | 3eqtr4a | |- ( ( A e. V /\ C e. W ) -> { <. A , C >. } = ( x e. { A } |-> B ) ) |