This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mat0dimbas0 | |- ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp | |- ( (/) X. (/) ) = (/) |
|
| 2 | 1 | a1i | |- ( R e. V -> ( (/) X. (/) ) = (/) ) |
| 3 | 2 | oveq2d | |- ( R e. V -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = ( ( Base ` R ) ^m (/) ) ) |
| 4 | fvex | |- ( Base ` R ) e. _V |
|
| 5 | map0e | |- ( ( Base ` R ) e. _V -> ( ( Base ` R ) ^m (/) ) = 1o ) |
|
| 6 | 4 5 | mp1i | |- ( R e. V -> ( ( Base ` R ) ^m (/) ) = 1o ) |
| 7 | 3 6 | eqtrd | |- ( R e. V -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = 1o ) |
| 8 | 0fi | |- (/) e. Fin |
|
| 9 | eqid | |- ( (/) Mat R ) = ( (/) Mat R ) |
|
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | 9 10 | matbas2 | |- ( ( (/) e. Fin /\ R e. V ) -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = ( Base ` ( (/) Mat R ) ) ) |
| 12 | 8 11 | mpan | |- ( R e. V -> ( ( Base ` R ) ^m ( (/) X. (/) ) ) = ( Base ` ( (/) Mat R ) ) ) |
| 13 | df1o2 | |- 1o = { (/) } |
|
| 14 | 13 | a1i | |- ( R e. V -> 1o = { (/) } ) |
| 15 | 7 12 14 | 3eqtr3d | |- ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |