This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019) (Proof shortened by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgnelbas.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| zrhpsgnelbas.s | |- S = ( pmSgn ` N ) |
||
| zrhpsgnelbas.y | |- Y = ( ZRHom ` R ) |
||
| Assertion | zrhcopsgnelbas | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) e. ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnelbas.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | zrhpsgnelbas.s | |- S = ( pmSgn ` N ) |
|
| 3 | zrhpsgnelbas.y | |- Y = ( ZRHom ` R ) |
|
| 4 | 1 2 | cofipsgn | |- ( ( N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
| 5 | 4 | 3adant1 | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) = ( Y ` ( S ` Q ) ) ) |
| 6 | 1 2 3 | zrhpsgnelbas | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( Y ` ( S ` Q ) ) e. ( Base ` R ) ) |
| 7 | 5 6 | eqeltrd | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) e. ( Base ` R ) ) |