This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfadd.1 | |- ( ph -> F e. MblFn ) |
|
| mbfadd.2 | |- ( ph -> G e. MblFn ) |
||
| mbfadd.3 | |- ( ph -> F : A --> RR ) |
||
| mbfadd.4 | |- ( ph -> G : A --> RR ) |
||
| Assertion | mbfaddlem | |- ( ph -> ( F oF + G ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfadd.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfadd.2 | |- ( ph -> G e. MblFn ) |
|
| 3 | mbfadd.3 | |- ( ph -> F : A --> RR ) |
|
| 4 | mbfadd.4 | |- ( ph -> G : A --> RR ) |
|
| 5 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
| 7 | 3 | fdmd | |- ( ph -> dom F = A ) |
| 8 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 9 | 1 8 | syl | |- ( ph -> dom F e. dom vol ) |
| 10 | 7 9 | eqeltrrd | |- ( ph -> A e. dom vol ) |
| 11 | inidm | |- ( A i^i A ) = A |
|
| 12 | 6 3 4 10 10 11 | off | |- ( ph -> ( F oF + G ) : A --> RR ) |
| 13 | eliun | |- ( x e. U_ r e. QQ ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) <-> E. r e. QQ x e. ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) ) |
|
| 14 | r19.42v | |- ( E. r e. QQ ( x e. A /\ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) <-> ( x e. A /\ E. r e. QQ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) ) |
|
| 15 | simplr | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> y e. RR ) |
|
| 16 | 4 | adantr | |- ( ( ph /\ y e. RR ) -> G : A --> RR ) |
| 17 | 16 | ffvelcdmda | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( G ` x ) e. RR ) |
| 18 | 3 | adantr | |- ( ( ph /\ y e. RR ) -> F : A --> RR ) |
| 19 | 18 | ffvelcdmda | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( F ` x ) e. RR ) |
| 20 | 15 17 19 | ltsubaddd | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( ( y - ( G ` x ) ) < ( F ` x ) <-> y < ( ( F ` x ) + ( G ` x ) ) ) ) |
| 21 | 15 | adantr | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> y e. RR ) |
| 22 | qre | |- ( r e. QQ -> r e. RR ) |
|
| 23 | 22 | adantl | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> r e. RR ) |
| 24 | 17 | adantr | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( G ` x ) e. RR ) |
| 25 | ltsub23 | |- ( ( y e. RR /\ r e. RR /\ ( G ` x ) e. RR ) -> ( ( y - r ) < ( G ` x ) <-> ( y - ( G ` x ) ) < r ) ) |
|
| 26 | 21 23 24 25 | syl3anc | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( y - r ) < ( G ` x ) <-> ( y - ( G ` x ) ) < r ) ) |
| 27 | 26 | anbi1cd | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( r < ( F ` x ) /\ ( y - r ) < ( G ` x ) ) <-> ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) ) ) |
| 28 | 27 | rexbidva | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( E. r e. QQ ( r < ( F ` x ) /\ ( y - r ) < ( G ` x ) ) <-> E. r e. QQ ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) ) ) |
| 29 | 15 17 | resubcld | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( y - ( G ` x ) ) e. RR ) |
| 30 | 29 | adantr | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( y - ( G ` x ) ) e. RR ) |
| 31 | 19 | adantr | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( F ` x ) e. RR ) |
| 32 | lttr | |- ( ( ( y - ( G ` x ) ) e. RR /\ r e. RR /\ ( F ` x ) e. RR ) -> ( ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) -> ( y - ( G ` x ) ) < ( F ` x ) ) ) |
|
| 33 | 30 23 31 32 | syl3anc | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) -> ( y - ( G ` x ) ) < ( F ` x ) ) ) |
| 34 | 33 | rexlimdva | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( E. r e. QQ ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) -> ( y - ( G ` x ) ) < ( F ` x ) ) ) |
| 35 | qbtwnre | |- ( ( ( y - ( G ` x ) ) e. RR /\ ( F ` x ) e. RR /\ ( y - ( G ` x ) ) < ( F ` x ) ) -> E. r e. QQ ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) ) |
|
| 36 | 35 | 3expia | |- ( ( ( y - ( G ` x ) ) e. RR /\ ( F ` x ) e. RR ) -> ( ( y - ( G ` x ) ) < ( F ` x ) -> E. r e. QQ ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) ) ) |
| 37 | 29 19 36 | syl2anc | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( ( y - ( G ` x ) ) < ( F ` x ) -> E. r e. QQ ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) ) ) |
| 38 | 34 37 | impbid | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( E. r e. QQ ( ( y - ( G ` x ) ) < r /\ r < ( F ` x ) ) <-> ( y - ( G ` x ) ) < ( F ` x ) ) ) |
| 39 | 28 38 | bitrd | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( E. r e. QQ ( r < ( F ` x ) /\ ( y - r ) < ( G ` x ) ) <-> ( y - ( G ` x ) ) < ( F ` x ) ) ) |
| 40 | 3 | ffnd | |- ( ph -> F Fn A ) |
| 41 | 40 | adantr | |- ( ( ph /\ y e. RR ) -> F Fn A ) |
| 42 | 4 | ffnd | |- ( ph -> G Fn A ) |
| 43 | 42 | adantr | |- ( ( ph /\ y e. RR ) -> G Fn A ) |
| 44 | 10 | adantr | |- ( ( ph /\ y e. RR ) -> A e. dom vol ) |
| 45 | eqidd | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 46 | eqidd | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
|
| 47 | 41 43 44 44 11 45 46 | ofval | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( ( F oF + G ) ` x ) = ( ( F ` x ) + ( G ` x ) ) ) |
| 48 | 47 | breq2d | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( y < ( ( F oF + G ) ` x ) <-> y < ( ( F ` x ) + ( G ` x ) ) ) ) |
| 49 | 20 39 48 | 3bitr4d | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( E. r e. QQ ( r < ( F ` x ) /\ ( y - r ) < ( G ` x ) ) <-> y < ( ( F oF + G ) ` x ) ) ) |
| 50 | 23 | rexrd | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> r e. RR* ) |
| 51 | elioopnf | |- ( r e. RR* -> ( ( F ` x ) e. ( r (,) +oo ) <-> ( ( F ` x ) e. RR /\ r < ( F ` x ) ) ) ) |
|
| 52 | 50 51 | syl | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( F ` x ) e. ( r (,) +oo ) <-> ( ( F ` x ) e. RR /\ r < ( F ` x ) ) ) ) |
| 53 | 31 52 | mpbirand | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( F ` x ) e. ( r (,) +oo ) <-> r < ( F ` x ) ) ) |
| 54 | 21 23 | resubcld | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( y - r ) e. RR ) |
| 55 | 54 | rexrd | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( y - r ) e. RR* ) |
| 56 | elioopnf | |- ( ( y - r ) e. RR* -> ( ( G ` x ) e. ( ( y - r ) (,) +oo ) <-> ( ( G ` x ) e. RR /\ ( y - r ) < ( G ` x ) ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( G ` x ) e. ( ( y - r ) (,) +oo ) <-> ( ( G ` x ) e. RR /\ ( y - r ) < ( G ` x ) ) ) ) |
| 58 | 24 57 | mpbirand | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( G ` x ) e. ( ( y - r ) (,) +oo ) <-> ( y - r ) < ( G ` x ) ) ) |
| 59 | 53 58 | anbi12d | |- ( ( ( ( ph /\ y e. RR ) /\ x e. A ) /\ r e. QQ ) -> ( ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) <-> ( r < ( F ` x ) /\ ( y - r ) < ( G ` x ) ) ) ) |
| 60 | 59 | rexbidva | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( E. r e. QQ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) <-> E. r e. QQ ( r < ( F ` x ) /\ ( y - r ) < ( G ` x ) ) ) ) |
| 61 | 12 | adantr | |- ( ( ph /\ y e. RR ) -> ( F oF + G ) : A --> RR ) |
| 62 | 61 | ffvelcdmda | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( ( F oF + G ) ` x ) e. RR ) |
| 63 | 15 | rexrd | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> y e. RR* ) |
| 64 | elioopnf | |- ( y e. RR* -> ( ( ( F oF + G ) ` x ) e. ( y (,) +oo ) <-> ( ( ( F oF + G ) ` x ) e. RR /\ y < ( ( F oF + G ) ` x ) ) ) ) |
|
| 65 | 63 64 | syl | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( ( ( F oF + G ) ` x ) e. ( y (,) +oo ) <-> ( ( ( F oF + G ) ` x ) e. RR /\ y < ( ( F oF + G ) ` x ) ) ) ) |
| 66 | 62 65 | mpbirand | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( ( ( F oF + G ) ` x ) e. ( y (,) +oo ) <-> y < ( ( F oF + G ) ` x ) ) ) |
| 67 | 49 60 66 | 3bitr4d | |- ( ( ( ph /\ y e. RR ) /\ x e. A ) -> ( E. r e. QQ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) <-> ( ( F oF + G ) ` x ) e. ( y (,) +oo ) ) ) |
| 68 | 67 | pm5.32da | |- ( ( ph /\ y e. RR ) -> ( ( x e. A /\ E. r e. QQ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) <-> ( x e. A /\ ( ( F oF + G ) ` x ) e. ( y (,) +oo ) ) ) ) |
| 69 | 14 68 | bitrid | |- ( ( ph /\ y e. RR ) -> ( E. r e. QQ ( x e. A /\ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) <-> ( x e. A /\ ( ( F oF + G ) ` x ) e. ( y (,) +oo ) ) ) ) |
| 70 | elpreima | |- ( F Fn A -> ( x e. ( `' F " ( r (,) +oo ) ) <-> ( x e. A /\ ( F ` x ) e. ( r (,) +oo ) ) ) ) |
|
| 71 | 41 70 | syl | |- ( ( ph /\ y e. RR ) -> ( x e. ( `' F " ( r (,) +oo ) ) <-> ( x e. A /\ ( F ` x ) e. ( r (,) +oo ) ) ) ) |
| 72 | elpreima | |- ( G Fn A -> ( x e. ( `' G " ( ( y - r ) (,) +oo ) ) <-> ( x e. A /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) ) |
|
| 73 | 43 72 | syl | |- ( ( ph /\ y e. RR ) -> ( x e. ( `' G " ( ( y - r ) (,) +oo ) ) <-> ( x e. A /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) ) |
| 74 | 71 73 | anbi12d | |- ( ( ph /\ y e. RR ) -> ( ( x e. ( `' F " ( r (,) +oo ) ) /\ x e. ( `' G " ( ( y - r ) (,) +oo ) ) ) <-> ( ( x e. A /\ ( F ` x ) e. ( r (,) +oo ) ) /\ ( x e. A /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) ) ) |
| 75 | elin | |- ( x e. ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) <-> ( x e. ( `' F " ( r (,) +oo ) ) /\ x e. ( `' G " ( ( y - r ) (,) +oo ) ) ) ) |
|
| 76 | anandi | |- ( ( x e. A /\ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) <-> ( ( x e. A /\ ( F ` x ) e. ( r (,) +oo ) ) /\ ( x e. A /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) ) |
|
| 77 | 74 75 76 | 3bitr4g | |- ( ( ph /\ y e. RR ) -> ( x e. ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) <-> ( x e. A /\ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) ) ) |
| 78 | 77 | rexbidv | |- ( ( ph /\ y e. RR ) -> ( E. r e. QQ x e. ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) <-> E. r e. QQ ( x e. A /\ ( ( F ` x ) e. ( r (,) +oo ) /\ ( G ` x ) e. ( ( y - r ) (,) +oo ) ) ) ) ) |
| 79 | 12 | ffnd | |- ( ph -> ( F oF + G ) Fn A ) |
| 80 | 79 | adantr | |- ( ( ph /\ y e. RR ) -> ( F oF + G ) Fn A ) |
| 81 | elpreima | |- ( ( F oF + G ) Fn A -> ( x e. ( `' ( F oF + G ) " ( y (,) +oo ) ) <-> ( x e. A /\ ( ( F oF + G ) ` x ) e. ( y (,) +oo ) ) ) ) |
|
| 82 | 80 81 | syl | |- ( ( ph /\ y e. RR ) -> ( x e. ( `' ( F oF + G ) " ( y (,) +oo ) ) <-> ( x e. A /\ ( ( F oF + G ) ` x ) e. ( y (,) +oo ) ) ) ) |
| 83 | 69 78 82 | 3bitr4d | |- ( ( ph /\ y e. RR ) -> ( E. r e. QQ x e. ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) <-> x e. ( `' ( F oF + G ) " ( y (,) +oo ) ) ) ) |
| 84 | 13 83 | bitrid | |- ( ( ph /\ y e. RR ) -> ( x e. U_ r e. QQ ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) <-> x e. ( `' ( F oF + G ) " ( y (,) +oo ) ) ) ) |
| 85 | 84 | eqrdv | |- ( ( ph /\ y e. RR ) -> U_ r e. QQ ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) = ( `' ( F oF + G ) " ( y (,) +oo ) ) ) |
| 86 | qnnen | |- QQ ~~ NN |
|
| 87 | endom | |- ( QQ ~~ NN -> QQ ~<_ NN ) |
|
| 88 | 86 87 | ax-mp | |- QQ ~<_ NN |
| 89 | mbfima | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( r (,) +oo ) ) e. dom vol ) |
|
| 90 | 1 3 89 | syl2anc | |- ( ph -> ( `' F " ( r (,) +oo ) ) e. dom vol ) |
| 91 | mbfima | |- ( ( G e. MblFn /\ G : A --> RR ) -> ( `' G " ( ( y - r ) (,) +oo ) ) e. dom vol ) |
|
| 92 | 2 4 91 | syl2anc | |- ( ph -> ( `' G " ( ( y - r ) (,) +oo ) ) e. dom vol ) |
| 93 | inmbl | |- ( ( ( `' F " ( r (,) +oo ) ) e. dom vol /\ ( `' G " ( ( y - r ) (,) +oo ) ) e. dom vol ) -> ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) e. dom vol ) |
|
| 94 | 90 92 93 | syl2anc | |- ( ph -> ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) e. dom vol ) |
| 95 | 94 | ad2antrr | |- ( ( ( ph /\ y e. RR ) /\ r e. QQ ) -> ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) e. dom vol ) |
| 96 | 95 | ralrimiva | |- ( ( ph /\ y e. RR ) -> A. r e. QQ ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) e. dom vol ) |
| 97 | iunmbl2 | |- ( ( QQ ~<_ NN /\ A. r e. QQ ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) e. dom vol ) -> U_ r e. QQ ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) e. dom vol ) |
|
| 98 | 88 96 97 | sylancr | |- ( ( ph /\ y e. RR ) -> U_ r e. QQ ( ( `' F " ( r (,) +oo ) ) i^i ( `' G " ( ( y - r ) (,) +oo ) ) ) e. dom vol ) |
| 99 | 85 98 | eqeltrrd | |- ( ( ph /\ y e. RR ) -> ( `' ( F oF + G ) " ( y (,) +oo ) ) e. dom vol ) |
| 100 | 12 99 | ismbf3d | |- ( ph -> ( F oF + G ) e. MblFn ) |