This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialize the Lebesgue number lemma lebnum to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lebnumii | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ii | |- II = ( MetOpen ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
|
| 2 | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
|
| 3 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | 3 4 | sstri | |- ( 0 [,] 1 ) C_ CC |
| 6 | metres2 | |- ( ( ( abs o. - ) e. ( Met ` CC ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) ) |
|
| 7 | 2 5 6 | mp2an | |- ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) |
| 8 | 7 | a1i | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) ) |
| 9 | iicmp | |- II e. Comp |
|
| 10 | 9 | a1i | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> II e. Comp ) |
| 11 | simpl | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> U C_ II ) |
|
| 12 | simpr | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( 0 [,] 1 ) = U. U ) |
|
| 13 | 1 8 10 11 12 | lebnum | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> E. r e. RR+ A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) |
| 14 | rpreccl | |- ( r e. RR+ -> ( 1 / r ) e. RR+ ) |
|
| 15 | 14 | adantl | |- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( 1 / r ) e. RR+ ) |
| 16 | 15 | rpred | |- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( 1 / r ) e. RR ) |
| 17 | 15 | rpge0d | |- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> 0 <_ ( 1 / r ) ) |
| 18 | flge0nn0 | |- ( ( ( 1 / r ) e. RR /\ 0 <_ ( 1 / r ) ) -> ( |_ ` ( 1 / r ) ) e. NN0 ) |
|
| 19 | 16 17 18 | syl2anc | |- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( |_ ` ( 1 / r ) ) e. NN0 ) |
| 20 | nn0p1nn | |- ( ( |_ ` ( 1 / r ) ) e. NN0 -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) |
|
| 21 | 19 20 | syl | |- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) |
| 22 | elfznn | |- ( k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> k e. NN ) |
|
| 23 | 22 | adantl | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. NN ) |
| 24 | 23 | nnrpd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. RR+ ) |
| 25 | 21 | adantr | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) |
| 26 | 25 | nnrpd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR+ ) |
| 27 | 24 26 | rpdivcld | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR+ ) |
| 28 | 27 | rpred | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR ) |
| 29 | 27 | rpge0d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
| 30 | elfzle2 | |- ( k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> k <_ ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
|
| 31 | 30 | adantl | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k <_ ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
| 32 | 25 | nnred | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR ) |
| 33 | 32 | recnd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. CC ) |
| 34 | 33 | mulridd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) = ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
| 35 | 31 34 | breqtrrd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) |
| 36 | 23 | nnred | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. RR ) |
| 37 | 1red | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 1 e. RR ) |
|
| 38 | 25 | nngt0d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
| 39 | ledivmul | |- ( ( k e. RR /\ 1 e. RR /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 <-> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) ) |
|
| 40 | 36 37 32 38 39 | syl112anc | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 <-> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) ) |
| 41 | 35 40 | mpbird | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) |
| 42 | elicc01 | |- ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) <-> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR /\ 0 <_ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) ) |
|
| 43 | 28 29 41 42 | syl3anbrc | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) ) |
| 44 | oveq1 | |- ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) ) |
|
| 45 | 44 | sseq1d | |- ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u <-> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
| 46 | 45 | rexbidv | |- ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u <-> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
| 47 | 46 | rspcv | |- ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
| 48 | 43 47 | syl | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
| 49 | simplr | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR+ ) |
|
| 50 | 49 | rpred | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR ) |
| 51 | 28 50 | resubcld | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR ) |
| 52 | 51 | rexrd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR* ) |
| 53 | 28 50 | readdcld | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR ) |
| 54 | 53 | rexrd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR* ) |
| 55 | nnm1nn0 | |- ( k e. NN -> ( k - 1 ) e. NN0 ) |
|
| 56 | 23 55 | syl | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. NN0 ) |
| 57 | 56 | nn0red | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. RR ) |
| 58 | 57 25 | nndivred | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR ) |
| 59 | 36 | recnd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. CC ) |
| 60 | 57 | recnd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. CC ) |
| 61 | 25 | nnne0d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) =/= 0 ) |
| 62 | 59 60 33 61 | divsubdird | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - ( k - 1 ) ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) = ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) ) |
| 63 | ax-1cn | |- 1 e. CC |
|
| 64 | nncan | |- ( ( k e. CC /\ 1 e. CC ) -> ( k - ( k - 1 ) ) = 1 ) |
|
| 65 | 59 63 64 | sylancl | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - ( k - 1 ) ) = 1 ) |
| 66 | 65 | oveq1d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - ( k - 1 ) ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) = ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
| 67 | 62 66 | eqtr3d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) = ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
| 68 | 49 | rprecred | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / r ) e. RR ) |
| 69 | flltp1 | |- ( ( 1 / r ) e. RR -> ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
|
| 70 | 68 69 | syl | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
| 71 | rpgt0 | |- ( r e. RR+ -> 0 < r ) |
|
| 72 | 71 | ad2antlr | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 < r ) |
| 73 | ltdiv23 | |- ( ( 1 e. RR /\ ( r e. RR /\ 0 < r ) /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) <-> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) ) |
|
| 74 | 37 50 72 32 38 73 | syl122anc | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) <-> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) ) |
| 75 | 70 74 | mpbid | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) |
| 76 | 67 75 | eqbrtrd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) < r ) |
| 77 | 28 58 50 76 | ltsub23d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) < ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
| 78 | 28 49 | ltaddrpd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) |
| 79 | iccssioo | |- ( ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR* /\ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR* ) /\ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) < ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
|
| 80 | 52 54 77 78 79 | syl22anc | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
| 81 | 0red | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 e. RR ) |
|
| 82 | 56 | nn0ge0d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( k - 1 ) ) |
| 83 | divge0 | |- ( ( ( ( k - 1 ) e. RR /\ 0 <_ ( k - 1 ) ) /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
|
| 84 | 57 82 32 38 83 | syl22anc | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
| 85 | iccss | |- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( 0 [,] 1 ) ) |
|
| 86 | 81 37 84 41 85 | syl22anc | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( 0 [,] 1 ) ) |
| 87 | 80 86 | ssind | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) |
| 88 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 89 | 88 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 90 | sseqin2 | |- ( ( 0 [,] 1 ) C_ RR <-> ( RR i^i ( 0 [,] 1 ) ) = ( 0 [,] 1 ) ) |
|
| 91 | 3 90 | mpbi | |- ( RR i^i ( 0 [,] 1 ) ) = ( 0 [,] 1 ) |
| 92 | 43 91 | eleqtrrdi | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( RR i^i ( 0 [,] 1 ) ) ) |
| 93 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 94 | 93 | ad2antlr | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR* ) |
| 95 | xpss12 | |- ( ( ( 0 [,] 1 ) C_ RR /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) ) |
|
| 96 | 3 3 95 | mp2an | |- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) |
| 97 | resabs1 | |- ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
|
| 98 | 96 97 | ax-mp | |- ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 99 | 98 | eqcomi | |- ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 100 | 99 | blres | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( RR i^i ( 0 [,] 1 ) ) /\ r e. RR* ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) ) |
| 101 | 89 92 94 100 | mp3an2i | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) ) |
| 102 | 88 | bl2ioo | |- ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR /\ r e. RR ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
| 103 | 28 50 102 | syl2anc | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
| 104 | 103 | ineq1d | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) = ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) |
| 105 | 101 104 | eqtrd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) |
| 106 | 87 105 | sseqtrrd | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) ) |
| 107 | sstr2 | |- ( ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
|
| 108 | 106 107 | syl | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
| 109 | 108 | reximdv | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
| 110 | 48 109 | syld | |- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
| 111 | 110 | ralrimdva | |- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
| 112 | oveq2 | |- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( 1 ... n ) = ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
|
| 113 | oveq2 | |- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( k - 1 ) / n ) = ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
|
| 114 | oveq2 | |- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( k / n ) = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
|
| 115 | 113 114 | oveq12d | |- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( ( k - 1 ) / n ) [,] ( k / n ) ) = ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) ) |
| 116 | 115 | sseq1d | |- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
| 117 | 116 | rexbidv | |- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
| 118 | 112 117 | raleqbidv | |- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
| 119 | 118 | rspcev | |- ( ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN /\ A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) |
| 120 | 21 111 119 | syl6an | |- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) ) |
| 121 | 120 | rexlimdva | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( E. r e. RR+ A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) ) |
| 122 | 13 121 | mpd | |- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) |