This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialize the Lebesgue number lemma lebnum to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lebnumii | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ii | ⊢ II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) | |
| 2 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
| 3 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 3 4 | sstri | ⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 6 | metres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( Met ‘ ( 0 [,] 1 ) ) ) | |
| 7 | 2 5 6 | mp2an | ⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( Met ‘ ( 0 [,] 1 ) ) |
| 8 | 7 | a1i | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( Met ‘ ( 0 [,] 1 ) ) ) |
| 9 | iicmp | ⊢ II ∈ Comp | |
| 10 | 9 | a1i | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → II ∈ Comp ) |
| 11 | simpl | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → 𝑈 ⊆ II ) | |
| 12 | simpr | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ( 0 [,] 1 ) = ∪ 𝑈 ) | |
| 13 | 1 8 10 11 12 | lebnum | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) |
| 14 | rpreccl | ⊢ ( 𝑟 ∈ ℝ+ → ( 1 / 𝑟 ) ∈ ℝ+ ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( 1 / 𝑟 ) ∈ ℝ+ ) |
| 16 | 15 | rpred | ⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( 1 / 𝑟 ) ∈ ℝ ) |
| 17 | 15 | rpge0d | ⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝑟 ) ) |
| 18 | flge0nn0 | ⊢ ( ( ( 1 / 𝑟 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑟 ) ) → ( ⌊ ‘ ( 1 / 𝑟 ) ) ∈ ℕ0 ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ⌊ ‘ ( 1 / 𝑟 ) ) ∈ ℕ0 ) |
| 20 | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 1 / 𝑟 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ) |
| 22 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → 𝑘 ∈ ℕ ) | |
| 23 | 22 | adantl | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 24 | 23 | nnrpd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℝ+ ) |
| 25 | 21 | adantr | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ) |
| 26 | 25 | nnrpd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ+ ) |
| 27 | 24 26 | rpdivcld | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ+ ) |
| 28 | 27 | rpred | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ) |
| 29 | 27 | rpge0d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 30 | elfzle2 | ⊢ ( 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → 𝑘 ≤ ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ≤ ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 32 | 25 | nnred | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ) |
| 33 | 32 | recnd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℂ ) |
| 34 | 33 | mulridd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 35 | 31 34 | breqtrrd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ≤ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) ) |
| 36 | 23 | nnred | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 37 | 1red | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 1 ∈ ℝ ) | |
| 38 | 25 | nngt0d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 39 | ledivmul | ⊢ ( ( 𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ↔ 𝑘 ≤ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) ) ) | |
| 40 | 36 37 32 38 39 | syl112anc | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ↔ 𝑘 ≤ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) ) ) |
| 41 | 35 40 | mpbird | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ) |
| 42 | elicc01 | ⊢ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ) ) | |
| 43 | 28 29 41 42 | syl3anbrc | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( 0 [,] 1 ) ) |
| 44 | oveq1 | ⊢ ( 𝑥 = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ) | |
| 45 | 44 | sseq1d | ⊢ ( 𝑥 = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → ( ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ↔ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 46 | 45 | rexbidv | ⊢ ( 𝑥 = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 47 | 46 | rspcv | ⊢ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( 0 [,] 1 ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 48 | 43 47 | syl | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 49 | simplr | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑟 ∈ ℝ+ ) | |
| 50 | 49 | rpred | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑟 ∈ ℝ ) |
| 51 | 28 50 | resubcld | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) ∈ ℝ ) |
| 52 | 51 | rexrd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) ∈ ℝ* ) |
| 53 | 28 50 | readdcld | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ∈ ℝ ) |
| 54 | 53 | rexrd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ∈ ℝ* ) |
| 55 | nnm1nn0 | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) | |
| 56 | 23 55 | syl | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 57 | 56 | nn0red | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 58 | 57 25 | nndivred | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ) |
| 59 | 36 | recnd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 60 | 57 | recnd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℂ ) |
| 61 | 25 | nnne0d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ≠ 0 ) |
| 62 | 59 60 33 61 | divsubdird | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 − ( 𝑘 − 1 ) ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) = ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ) |
| 63 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 64 | nncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑘 − ( 𝑘 − 1 ) ) = 1 ) | |
| 65 | 59 63 64 | sylancl | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − ( 𝑘 − 1 ) ) = 1 ) |
| 66 | 65 | oveq1d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 − ( 𝑘 − 1 ) ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) = ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 67 | 62 66 | eqtr3d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) = ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 68 | 49 | rprecred | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 1 / 𝑟 ) ∈ ℝ ) |
| 69 | flltp1 | ⊢ ( ( 1 / 𝑟 ) ∈ ℝ → ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 71 | rpgt0 | ⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) | |
| 72 | 71 | ad2antlr | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 < 𝑟 ) |
| 73 | ltdiv23 | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ∧ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < 𝑟 ) ) | |
| 74 | 37 50 72 32 38 73 | syl122anc | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < 𝑟 ) ) |
| 75 | 70 74 | mpbid | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < 𝑟 ) |
| 76 | 67 75 | eqbrtrd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) < 𝑟 ) |
| 77 | 28 58 50 76 | ltsub23d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) < ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 78 | 28 49 | ltaddrpd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) |
| 79 | iccssioo | ⊢ ( ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) ∈ ℝ* ∧ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ∈ ℝ* ) ∧ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) < ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) | |
| 80 | 52 54 77 78 79 | syl22anc | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) |
| 81 | 0red | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ∈ ℝ ) | |
| 82 | 56 | nn0ge0d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( 𝑘 − 1 ) ) |
| 83 | divge0 | ⊢ ( ( ( ( 𝑘 − 1 ) ∈ ℝ ∧ 0 ≤ ( 𝑘 − 1 ) ) ∧ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) | |
| 84 | 57 82 32 38 83 | syl22anc | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 85 | iccss | ⊢ ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( 0 [,] 1 ) ) | |
| 86 | 81 37 84 41 85 | syl22anc | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( 0 [,] 1 ) ) |
| 87 | 80 86 | ssind | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ∩ ( 0 [,] 1 ) ) ) |
| 88 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 89 | 88 | rexmet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 90 | sseqin2 | ⊢ ( ( 0 [,] 1 ) ⊆ ℝ ↔ ( ℝ ∩ ( 0 [,] 1 ) ) = ( 0 [,] 1 ) ) | |
| 91 | 3 90 | mpbi | ⊢ ( ℝ ∩ ( 0 [,] 1 ) ) = ( 0 [,] 1 ) |
| 92 | 43 91 | eleqtrrdi | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( ℝ ∩ ( 0 [,] 1 ) ) ) |
| 93 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 94 | 93 | ad2antlr | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑟 ∈ ℝ* ) |
| 95 | xpss12 | ⊢ ( ( ( 0 [,] 1 ) ⊆ ℝ ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℝ × ℝ ) ) | |
| 96 | 3 3 95 | mp2an | ⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℝ × ℝ ) |
| 97 | resabs1 | ⊢ ( ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℝ × ℝ ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) | |
| 98 | 96 97 | ax-mp | ⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 99 | 98 | eqcomi | ⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 100 | 99 | blres | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( ℝ ∩ ( 0 [,] 1 ) ) ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ∩ ( 0 [,] 1 ) ) ) |
| 101 | 89 92 94 100 | mp3an2i | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ∩ ( 0 [,] 1 ) ) ) |
| 102 | 88 | bl2ioo | ⊢ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) |
| 103 | 28 50 102 | syl2anc | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) |
| 104 | 103 | ineq1d | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ∩ ( 0 [,] 1 ) ) = ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ∩ ( 0 [,] 1 ) ) ) |
| 105 | 101 104 | eqtrd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ∩ ( 0 [,] 1 ) ) ) |
| 106 | 87 105 | sseqtrrd | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ) |
| 107 | sstr2 | ⊢ ( ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) → ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) | |
| 108 | 106 107 | syl | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 109 | 108 | reximdv | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 110 | 48 109 | syld | ⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 111 | 110 | ralrimdva | ⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∀ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 112 | oveq2 | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) | |
| 113 | oveq2 | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ( 𝑘 − 1 ) / 𝑛 ) = ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) | |
| 114 | oveq2 | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( 𝑘 / 𝑛 ) = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) | |
| 115 | 113 114 | oveq12d | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) = ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ) |
| 116 | 115 | sseq1d | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ↔ ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 117 | 116 | rexbidv | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 118 | 112 117 | raleqbidv | ⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ↔ ∀ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 119 | 118 | rspcev | ⊢ ( ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) |
| 120 | 21 111 119 | syl6an | ⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) ) |
| 121 | 120 | rexlimdva | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ( ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) ) |
| 122 | 13 121 | mpd | ⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) |