This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metres . (Contributed by FL, 12-Oct-2006) (Proof shortened by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metres2 | |- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( Met ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 2 | xmetres2 | |- ( ( D e. ( *Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( *Met ` R ) ) |
|
| 3 | 1 2 | sylan | |- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( *Met ` R ) ) |
| 4 | metf | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
|
| 5 | 4 | adantr | |- ( ( D e. ( Met ` X ) /\ R C_ X ) -> D : ( X X. X ) --> RR ) |
| 6 | simpr | |- ( ( D e. ( Met ` X ) /\ R C_ X ) -> R C_ X ) |
|
| 7 | xpss12 | |- ( ( R C_ X /\ R C_ X ) -> ( R X. R ) C_ ( X X. X ) ) |
|
| 8 | 6 7 | sylancom | |- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( R X. R ) C_ ( X X. X ) ) |
| 9 | 5 8 | fssresd | |- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) : ( R X. R ) --> RR ) |
| 10 | ismet2 | |- ( ( D |` ( R X. R ) ) e. ( Met ` R ) <-> ( ( D |` ( R X. R ) ) e. ( *Met ` R ) /\ ( D |` ( R X. R ) ) : ( R X. R ) --> RR ) ) |
|
| 11 | 3 9 10 | sylanbrc | |- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( Met ` R ) ) |