This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0pledm.1 | |- ( ph -> A C_ CC ) |
|
| 0pledm.2 | |- ( ph -> F Fn A ) |
||
| Assertion | 0pledm | |- ( ph -> ( 0p oR <_ F <-> ( A X. { 0 } ) oR <_ F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pledm.1 | |- ( ph -> A C_ CC ) |
|
| 2 | 0pledm.2 | |- ( ph -> F Fn A ) |
|
| 3 | sseqin2 | |- ( A C_ CC <-> ( CC i^i A ) = A ) |
|
| 4 | 1 3 | sylib | |- ( ph -> ( CC i^i A ) = A ) |
| 5 | 4 | raleqdv | |- ( ph -> ( A. x e. ( CC i^i A ) 0 <_ ( F ` x ) <-> A. x e. A 0 <_ ( F ` x ) ) ) |
| 6 | 0cn | |- 0 e. CC |
|
| 7 | fnconstg | |- ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) |
|
| 8 | 6 7 | ax-mp | |- ( CC X. { 0 } ) Fn CC |
| 9 | df-0p | |- 0p = ( CC X. { 0 } ) |
|
| 10 | 9 | fneq1i | |- ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) |
| 11 | 8 10 | mpbir | |- 0p Fn CC |
| 12 | 11 | a1i | |- ( ph -> 0p Fn CC ) |
| 13 | cnex | |- CC e. _V |
|
| 14 | 13 | a1i | |- ( ph -> CC e. _V ) |
| 15 | ssexg | |- ( ( A C_ CC /\ CC e. _V ) -> A e. _V ) |
|
| 16 | 1 13 15 | sylancl | |- ( ph -> A e. _V ) |
| 17 | eqid | |- ( CC i^i A ) = ( CC i^i A ) |
|
| 18 | 0pval | |- ( x e. CC -> ( 0p ` x ) = 0 ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ x e. CC ) -> ( 0p ` x ) = 0 ) |
| 20 | eqidd | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 21 | 12 2 14 16 17 19 20 | ofrfval | |- ( ph -> ( 0p oR <_ F <-> A. x e. ( CC i^i A ) 0 <_ ( F ` x ) ) ) |
| 22 | fnconstg | |- ( 0 e. CC -> ( A X. { 0 } ) Fn A ) |
|
| 23 | 6 22 | ax-mp | |- ( A X. { 0 } ) Fn A |
| 24 | 23 | a1i | |- ( ph -> ( A X. { 0 } ) Fn A ) |
| 25 | inidm | |- ( A i^i A ) = A |
|
| 26 | c0ex | |- 0 e. _V |
|
| 27 | 26 | fvconst2 | |- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 28 | 27 | adantl | |- ( ( ph /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 29 | 24 2 16 16 25 28 20 | ofrfval | |- ( ph -> ( ( A X. { 0 } ) oR <_ F <-> A. x e. A 0 <_ ( F ` x ) ) ) |
| 30 | 5 21 29 | 3bitr4d | |- ( ph -> ( 0p oR <_ F <-> ( A X. { 0 } ) oR <_ F ) ) |