This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1f1.1 | |- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
|
| Assertion | itg11 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( S.1 ` F ) = ( vol ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f1.1 | |- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
|
| 2 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 3 | 0mbl | |- (/) e. dom vol |
|
| 4 | mblvol | |- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( vol ` (/) ) = ( vol* ` (/) ) |
| 6 | itg10 | |- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
|
| 7 | 2 5 6 | 3eqtr4ri | |- ( S.1 ` ( RR X. { 0 } ) ) = ( vol ` (/) ) |
| 8 | noel | |- -. x e. (/) |
|
| 9 | eleq2 | |- ( A = (/) -> ( x e. A <-> x e. (/) ) ) |
|
| 10 | 8 9 | mtbiri | |- ( A = (/) -> -. x e. A ) |
| 11 | 10 | iffalsed | |- ( A = (/) -> if ( x e. A , 1 , 0 ) = 0 ) |
| 12 | 11 | mpteq2dv | |- ( A = (/) -> ( x e. RR |-> if ( x e. A , 1 , 0 ) ) = ( x e. RR |-> 0 ) ) |
| 13 | fconstmpt | |- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
|
| 14 | 12 1 13 | 3eqtr4g | |- ( A = (/) -> F = ( RR X. { 0 } ) ) |
| 15 | 14 | fveq2d | |- ( A = (/) -> ( S.1 ` F ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
| 16 | fveq2 | |- ( A = (/) -> ( vol ` A ) = ( vol ` (/) ) ) |
|
| 17 | 7 15 16 | 3eqtr4a | |- ( A = (/) -> ( S.1 ` F ) = ( vol ` A ) ) |
| 18 | 17 | a1i | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( A = (/) -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 19 | n0 | |- ( A =/= (/) <-> E. y y e. A ) |
|
| 20 | 1 | i1f1 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F e. dom S.1 ) |
| 21 | 20 | adantr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> F e. dom S.1 ) |
| 22 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) ) |
|
| 23 | 21 22 | syl | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( S.1 ` F ) = sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) ) |
| 24 | 1 | i1f1lem | |- ( F : RR --> { 0 , 1 } /\ ( A e. dom vol -> ( `' F " { 1 } ) = A ) ) |
| 25 | 24 | simpli | |- F : RR --> { 0 , 1 } |
| 26 | frn | |- ( F : RR --> { 0 , 1 } -> ran F C_ { 0 , 1 } ) |
|
| 27 | 25 26 | ax-mp | |- ran F C_ { 0 , 1 } |
| 28 | ssdif | |- ( ran F C_ { 0 , 1 } -> ( ran F \ { 0 } ) C_ ( { 0 , 1 } \ { 0 } ) ) |
|
| 29 | 27 28 | ax-mp | |- ( ran F \ { 0 } ) C_ ( { 0 , 1 } \ { 0 } ) |
| 30 | difprsnss | |- ( { 0 , 1 } \ { 0 } ) C_ { 1 } |
|
| 31 | 29 30 | sstri | |- ( ran F \ { 0 } ) C_ { 1 } |
| 32 | 31 | a1i | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( ran F \ { 0 } ) C_ { 1 } ) |
| 33 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 34 | 33 | adantr | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> A C_ RR ) |
| 35 | 34 | sselda | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> y e. RR ) |
| 36 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 37 | 36 | ifbid | |- ( x = y -> if ( x e. A , 1 , 0 ) = if ( y e. A , 1 , 0 ) ) |
| 38 | 1ex | |- 1 e. _V |
|
| 39 | c0ex | |- 0 e. _V |
|
| 40 | 38 39 | ifex | |- if ( y e. A , 1 , 0 ) e. _V |
| 41 | 37 1 40 | fvmpt | |- ( y e. RR -> ( F ` y ) = if ( y e. A , 1 , 0 ) ) |
| 42 | 35 41 | syl | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( F ` y ) = if ( y e. A , 1 , 0 ) ) |
| 43 | iftrue | |- ( y e. A -> if ( y e. A , 1 , 0 ) = 1 ) |
|
| 44 | 43 | adantl | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> if ( y e. A , 1 , 0 ) = 1 ) |
| 45 | 42 44 | eqtrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( F ` y ) = 1 ) |
| 46 | ffn | |- ( F : RR --> { 0 , 1 } -> F Fn RR ) |
|
| 47 | 25 46 | ax-mp | |- F Fn RR |
| 48 | fnfvelrn | |- ( ( F Fn RR /\ y e. RR ) -> ( F ` y ) e. ran F ) |
|
| 49 | 47 35 48 | sylancr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( F ` y ) e. ran F ) |
| 50 | 45 49 | eqeltrrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> 1 e. ran F ) |
| 51 | ax-1ne0 | |- 1 =/= 0 |
|
| 52 | eldifsn | |- ( 1 e. ( ran F \ { 0 } ) <-> ( 1 e. ran F /\ 1 =/= 0 ) ) |
|
| 53 | 50 51 52 | sylanblrc | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> 1 e. ( ran F \ { 0 } ) ) |
| 54 | 53 | snssd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> { 1 } C_ ( ran F \ { 0 } ) ) |
| 55 | 32 54 | eqssd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( ran F \ { 0 } ) = { 1 } ) |
| 56 | 55 | sumeq1d | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) = sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) ) |
| 57 | 1re | |- 1 e. RR |
|
| 58 | 24 | simpri | |- ( A e. dom vol -> ( `' F " { 1 } ) = A ) |
| 59 | 58 | ad2antrr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( `' F " { 1 } ) = A ) |
| 60 | 59 | fveq2d | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( vol ` ( `' F " { 1 } ) ) = ( vol ` A ) ) |
| 61 | 60 | oveq2d | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) = ( 1 x. ( vol ` A ) ) ) |
| 62 | simplr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( vol ` A ) e. RR ) |
|
| 63 | 62 | recnd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( vol ` A ) e. CC ) |
| 64 | 63 | mullidd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` A ) ) = ( vol ` A ) ) |
| 65 | 61 64 | eqtrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) = ( vol ` A ) ) |
| 66 | 65 63 | eqeltrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) e. CC ) |
| 67 | id | |- ( z = 1 -> z = 1 ) |
|
| 68 | sneq | |- ( z = 1 -> { z } = { 1 } ) |
|
| 69 | 68 | imaeq2d | |- ( z = 1 -> ( `' F " { z } ) = ( `' F " { 1 } ) ) |
| 70 | 69 | fveq2d | |- ( z = 1 -> ( vol ` ( `' F " { z } ) ) = ( vol ` ( `' F " { 1 } ) ) ) |
| 71 | 67 70 | oveq12d | |- ( z = 1 -> ( z x. ( vol ` ( `' F " { z } ) ) ) = ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) ) |
| 72 | 71 | sumsn | |- ( ( 1 e. RR /\ ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) e. CC ) -> sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) = ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) ) |
| 73 | 57 66 72 | sylancr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) = ( 1 x. ( vol ` ( `' F " { 1 } ) ) ) ) |
| 74 | 73 65 | eqtrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. { 1 } ( z x. ( vol ` ( `' F " { z } ) ) ) = ( vol ` A ) ) |
| 75 | 56 74 | eqtrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> sum_ z e. ( ran F \ { 0 } ) ( z x. ( vol ` ( `' F " { z } ) ) ) = ( vol ` A ) ) |
| 76 | 23 75 | eqtrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. A ) -> ( S.1 ` F ) = ( vol ` A ) ) |
| 77 | 76 | ex | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( y e. A -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 78 | 77 | exlimdv | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( E. y y e. A -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 79 | 19 78 | biimtrid | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( A =/= (/) -> ( S.1 ` F ) = ( vol ` A ) ) ) |
| 80 | 18 79 | pm2.61dne | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( S.1 ` F ) = ( vol ` A ) ) |