This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1f1.1 | |- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
|
| Assertion | i1f1 | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f1.1 | |- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
|
| 2 | 1 | i1f1lem | |- ( F : RR --> { 0 , 1 } /\ ( A e. dom vol -> ( `' F " { 1 } ) = A ) ) |
| 3 | 2 | simpli | |- F : RR --> { 0 , 1 } |
| 4 | 0re | |- 0 e. RR |
|
| 5 | 1re | |- 1 e. RR |
|
| 6 | prssi | |- ( ( 0 e. RR /\ 1 e. RR ) -> { 0 , 1 } C_ RR ) |
|
| 7 | 4 5 6 | mp2an | |- { 0 , 1 } C_ RR |
| 8 | fss | |- ( ( F : RR --> { 0 , 1 } /\ { 0 , 1 } C_ RR ) -> F : RR --> RR ) |
|
| 9 | 3 7 8 | mp2an | |- F : RR --> RR |
| 10 | 9 | a1i | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F : RR --> RR ) |
| 11 | prfi | |- { 0 , 1 } e. Fin |
|
| 12 | 1ex | |- 1 e. _V |
|
| 13 | 12 | prid2 | |- 1 e. { 0 , 1 } |
| 14 | c0ex | |- 0 e. _V |
|
| 15 | 14 | prid1 | |- 0 e. { 0 , 1 } |
| 16 | 13 15 | ifcli | |- if ( x e. A , 1 , 0 ) e. { 0 , 1 } |
| 17 | 16 | a1i | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ x e. RR ) -> if ( x e. A , 1 , 0 ) e. { 0 , 1 } ) |
| 18 | 17 1 | fmptd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F : RR --> { 0 , 1 } ) |
| 19 | frn | |- ( F : RR --> { 0 , 1 } -> ran F C_ { 0 , 1 } ) |
|
| 20 | 18 19 | syl | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ran F C_ { 0 , 1 } ) |
| 21 | ssfi | |- ( ( { 0 , 1 } e. Fin /\ ran F C_ { 0 , 1 } ) -> ran F e. Fin ) |
|
| 22 | 11 20 21 | sylancr | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ran F e. Fin ) |
| 23 | 3 19 | ax-mp | |- ran F C_ { 0 , 1 } |
| 24 | df-pr | |- { 0 , 1 } = ( { 0 } u. { 1 } ) |
|
| 25 | 24 | equncomi | |- { 0 , 1 } = ( { 1 } u. { 0 } ) |
| 26 | 23 25 | sseqtri | |- ran F C_ ( { 1 } u. { 0 } ) |
| 27 | ssdif | |- ( ran F C_ ( { 1 } u. { 0 } ) -> ( ran F \ { 0 } ) C_ ( ( { 1 } u. { 0 } ) \ { 0 } ) ) |
|
| 28 | 26 27 | ax-mp | |- ( ran F \ { 0 } ) C_ ( ( { 1 } u. { 0 } ) \ { 0 } ) |
| 29 | difun2 | |- ( ( { 1 } u. { 0 } ) \ { 0 } ) = ( { 1 } \ { 0 } ) |
|
| 30 | difss | |- ( { 1 } \ { 0 } ) C_ { 1 } |
|
| 31 | 29 30 | eqsstri | |- ( ( { 1 } u. { 0 } ) \ { 0 } ) C_ { 1 } |
| 32 | 28 31 | sstri | |- ( ran F \ { 0 } ) C_ { 1 } |
| 33 | 32 | sseli | |- ( y e. ( ran F \ { 0 } ) -> y e. { 1 } ) |
| 34 | elsni | |- ( y e. { 1 } -> y = 1 ) |
|
| 35 | 33 34 | syl | |- ( y e. ( ran F \ { 0 } ) -> y = 1 ) |
| 36 | 35 | sneqd | |- ( y e. ( ran F \ { 0 } ) -> { y } = { 1 } ) |
| 37 | 36 | imaeq2d | |- ( y e. ( ran F \ { 0 } ) -> ( `' F " { y } ) = ( `' F " { 1 } ) ) |
| 38 | 2 | simpri | |- ( A e. dom vol -> ( `' F " { 1 } ) = A ) |
| 39 | 38 | adantr | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( `' F " { 1 } ) = A ) |
| 40 | 37 39 | sylan9eqr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) = A ) |
| 41 | simpll | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> A e. dom vol ) |
|
| 42 | 40 41 | eqeltrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) e. dom vol ) |
| 43 | 40 | fveq2d | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = ( vol ` A ) ) |
| 44 | simplr | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` A ) e. RR ) |
|
| 45 | 43 44 | eqeltrd | |- ( ( ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) e. RR ) |
| 46 | 10 22 42 45 | i1fd | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> F e. dom S.1 ) |