This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfconst and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfconstlem | |- ( ( A e. dom vol /\ C e. RR ) -> ( `' ( A X. { C } ) " B ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | |- ( `' ( A X. { C } ) " B ) C_ dom ( A X. { C } ) |
|
| 2 | 1 | a1i | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) C_ dom ( A X. { C } ) ) |
| 3 | cnvimarndm | |- ( `' ( A X. { C } ) " ran ( A X. { C } ) ) = dom ( A X. { C } ) |
|
| 4 | fconst6g | |- ( C e. B -> ( A X. { C } ) : A --> B ) |
|
| 5 | 4 | adantl | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( A X. { C } ) : A --> B ) |
| 6 | frn | |- ( ( A X. { C } ) : A --> B -> ran ( A X. { C } ) C_ B ) |
|
| 7 | imass2 | |- ( ran ( A X. { C } ) C_ B -> ( `' ( A X. { C } ) " ran ( A X. { C } ) ) C_ ( `' ( A X. { C } ) " B ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " ran ( A X. { C } ) ) C_ ( `' ( A X. { C } ) " B ) ) |
| 9 | 3 8 | eqsstrrid | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> dom ( A X. { C } ) C_ ( `' ( A X. { C } ) " B ) ) |
| 10 | 2 9 | eqssd | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) = dom ( A X. { C } ) ) |
| 11 | fconstg | |- ( C e. RR -> ( A X. { C } ) : A --> { C } ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( A X. { C } ) : A --> { C } ) |
| 13 | 12 | fdmd | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> dom ( A X. { C } ) = A ) |
| 14 | 10 13 | eqtrd | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) = A ) |
| 15 | simpll | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> A e. dom vol ) |
|
| 16 | 14 15 | eqeltrd | |- ( ( ( A e. dom vol /\ C e. RR ) /\ C e. B ) -> ( `' ( A X. { C } ) " B ) e. dom vol ) |
| 17 | 11 | ad2antlr | |- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( A X. { C } ) : A --> { C } ) |
| 18 | incom | |- ( { C } i^i B ) = ( B i^i { C } ) |
|
| 19 | simpr | |- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> -. C e. B ) |
|
| 20 | disjsn | |- ( ( B i^i { C } ) = (/) <-> -. C e. B ) |
|
| 21 | 19 20 | sylibr | |- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( B i^i { C } ) = (/) ) |
| 22 | 18 21 | eqtrid | |- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( { C } i^i B ) = (/) ) |
| 23 | fimacnvdisj | |- ( ( ( A X. { C } ) : A --> { C } /\ ( { C } i^i B ) = (/) ) -> ( `' ( A X. { C } ) " B ) = (/) ) |
|
| 24 | 17 22 23 | syl2anc | |- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( `' ( A X. { C } ) " B ) = (/) ) |
| 25 | 0mbl | |- (/) e. dom vol |
|
| 26 | 24 25 | eqeltrdi | |- ( ( ( A e. dom vol /\ C e. RR ) /\ -. C e. B ) -> ( `' ( A X. { C } ) " B ) e. dom vol ) |
| 27 | 16 26 | pm2.61dan | |- ( ( A e. dom vol /\ C e. RR ) -> ( `' ( A X. { C } ) " B ) e. dom vol ) |