This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " A is Lebesgue-measurable". A set is measurable if it splits every other set x in a "nice" way, that is, if the measure of the pieces x i^i A and x \ A sum up to the measure of x (assuming that the measure of x is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbl | |- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq2 | |- ( y = A -> ( x i^i y ) = ( x i^i A ) ) |
|
| 2 | 1 | fveq2d | |- ( y = A -> ( vol* ` ( x i^i y ) ) = ( vol* ` ( x i^i A ) ) ) |
| 3 | difeq2 | |- ( y = A -> ( x \ y ) = ( x \ A ) ) |
|
| 4 | 3 | fveq2d | |- ( y = A -> ( vol* ` ( x \ y ) ) = ( vol* ` ( x \ A ) ) ) |
| 5 | 2 4 | oveq12d | |- ( y = A -> ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 6 | 5 | eqeq2d | |- ( y = A -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) <-> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 7 | 6 | ralbidv | |- ( y = A -> ( A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) <-> A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 8 | df-vol | |- vol = ( vol* |` { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } ) |
|
| 9 | 8 | dmeqi | |- dom vol = dom ( vol* |` { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } ) |
| 10 | dmres | |- dom ( vol* |` { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } ) = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i dom vol* ) |
|
| 11 | ovolf | |- vol* : ~P RR --> ( 0 [,] +oo ) |
|
| 12 | 11 | fdmi | |- dom vol* = ~P RR |
| 13 | 12 | ineq2i | |- ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i dom vol* ) = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i ~P RR ) |
| 14 | 9 10 13 | 3eqtri | |- dom vol = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i ~P RR ) |
| 15 | dfrab2 | |- { y e. ~P RR | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } = ( { y | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } i^i ~P RR ) |
|
| 16 | 14 15 | eqtr4i | |- dom vol = { y e. ~P RR | A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i y ) ) + ( vol* ` ( x \ y ) ) ) } |
| 17 | 7 16 | elrab2 | |- ( A e. dom vol <-> ( A e. ~P RR /\ A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 18 | reex | |- RR e. _V |
|
| 19 | 18 | elpw2 | |- ( A e. ~P RR <-> A C_ RR ) |
| 20 | ffn | |- ( vol* : ~P RR --> ( 0 [,] +oo ) -> vol* Fn ~P RR ) |
|
| 21 | elpreima | |- ( vol* Fn ~P RR -> ( x e. ( `' vol* " RR ) <-> ( x e. ~P RR /\ ( vol* ` x ) e. RR ) ) ) |
|
| 22 | 11 20 21 | mp2b | |- ( x e. ( `' vol* " RR ) <-> ( x e. ~P RR /\ ( vol* ` x ) e. RR ) ) |
| 23 | 22 | imbi1i | |- ( ( x e. ( `' vol* " RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 24 | impexp | |- ( ( ( x e. ~P RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( x e. ~P RR -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
|
| 25 | 23 24 | bitri | |- ( ( x e. ( `' vol* " RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( x e. ~P RR -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
| 26 | 25 | ralbii2 | |- ( A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <-> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) |
| 27 | 19 26 | anbi12i | |- ( ( A e. ~P RR /\ A. x e. ( `' vol* " RR ) ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
| 28 | 17 27 | bitri | |- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |