This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsscl.f | |- F = ( Scalar ` W ) |
|
| lsscl.b | |- B = ( Base ` F ) |
||
| lsscl.p | |- .+ = ( +g ` W ) |
||
| lsscl.t | |- .x. = ( .s ` W ) |
||
| lsscl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lsscl | |- ( ( U e. S /\ ( Z e. B /\ X e. U /\ Y e. U ) ) -> ( ( Z .x. X ) .+ Y ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsscl.f | |- F = ( Scalar ` W ) |
|
| 2 | lsscl.b | |- B = ( Base ` F ) |
|
| 3 | lsscl.p | |- .+ = ( +g ` W ) |
|
| 4 | lsscl.t | |- .x. = ( .s ` W ) |
|
| 5 | lsscl.s | |- S = ( LSubSp ` W ) |
|
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 1 2 6 3 4 5 | islss | |- ( U e. S <-> ( U C_ ( Base ` W ) /\ U =/= (/) /\ A. x e. B A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U ) ) |
| 8 | 7 | simp3bi | |- ( U e. S -> A. x e. B A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U ) |
| 9 | oveq1 | |- ( x = Z -> ( x .x. a ) = ( Z .x. a ) ) |
|
| 10 | 9 | oveq1d | |- ( x = Z -> ( ( x .x. a ) .+ b ) = ( ( Z .x. a ) .+ b ) ) |
| 11 | 10 | eleq1d | |- ( x = Z -> ( ( ( x .x. a ) .+ b ) e. U <-> ( ( Z .x. a ) .+ b ) e. U ) ) |
| 12 | oveq2 | |- ( a = X -> ( Z .x. a ) = ( Z .x. X ) ) |
|
| 13 | 12 | oveq1d | |- ( a = X -> ( ( Z .x. a ) .+ b ) = ( ( Z .x. X ) .+ b ) ) |
| 14 | 13 | eleq1d | |- ( a = X -> ( ( ( Z .x. a ) .+ b ) e. U <-> ( ( Z .x. X ) .+ b ) e. U ) ) |
| 15 | oveq2 | |- ( b = Y -> ( ( Z .x. X ) .+ b ) = ( ( Z .x. X ) .+ Y ) ) |
|
| 16 | 15 | eleq1d | |- ( b = Y -> ( ( ( Z .x. X ) .+ b ) e. U <-> ( ( Z .x. X ) .+ Y ) e. U ) ) |
| 17 | 11 14 16 | rspc3v | |- ( ( Z e. B /\ X e. U /\ Y e. U ) -> ( A. x e. B A. a e. U A. b e. U ( ( x .x. a ) .+ b ) e. U -> ( ( Z .x. X ) .+ Y ) e. U ) ) |
| 18 | 8 17 | mpan9 | |- ( ( U e. S /\ ( Z e. B /\ X e. U /\ Y e. U ) ) -> ( ( Z .x. X ) .+ Y ) e. U ) |