This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product (right-distributivity). ( ax-hvdistr1 analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsdir.v | |- V = ( Base ` W ) |
|
| lmodvsdir.a | |- .+ = ( +g ` W ) |
||
| lmodvsdir.f | |- F = ( Scalar ` W ) |
||
| lmodvsdir.s | |- .x. = ( .s ` W ) |
||
| lmodvsdir.k | |- K = ( Base ` F ) |
||
| lmodvsdir.p | |- .+^ = ( +g ` F ) |
||
| Assertion | lmodvsdir | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdir.v | |- V = ( Base ` W ) |
|
| 2 | lmodvsdir.a | |- .+ = ( +g ` W ) |
|
| 3 | lmodvsdir.f | |- F = ( Scalar ` W ) |
|
| 4 | lmodvsdir.s | |- .x. = ( .s ` W ) |
|
| 5 | lmodvsdir.k | |- K = ( Base ` F ) |
|
| 6 | lmodvsdir.p | |- .+^ = ( +g ` F ) |
|
| 7 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 8 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 9 | 1 2 4 3 5 6 7 8 | lmodlema | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( R .x. X ) e. V /\ ( R .x. ( X .+ X ) ) = ( ( R .x. X ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) /\ ( ( ( Q ( .r ` F ) R ) .x. X ) = ( Q .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X ) ) ) |
| 10 | 9 | simpld | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( R .x. X ) e. V /\ ( R .x. ( X .+ X ) ) = ( ( R .x. X ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) ) |
| 11 | 10 | simp3d | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| 12 | 11 | 3expa | |- ( ( ( W e. LMod /\ ( Q e. K /\ R e. K ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| 13 | 12 | anabsan2 | |- ( ( ( W e. LMod /\ ( Q e. K /\ R e. K ) ) /\ X e. V ) -> ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| 14 | 13 | exp42 | |- ( W e. LMod -> ( Q e. K -> ( R e. K -> ( X e. V -> ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) ) ) ) |
| 15 | 14 | 3imp2 | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q .+^ R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |