This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssss.v | |- V = ( Base ` W ) |
|
| lssss.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lss1 | |- ( W e. LMod -> V e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssss.v | |- V = ( Base ` W ) |
|
| 2 | lssss.s | |- S = ( LSubSp ` W ) |
|
| 3 | eqidd | |- ( W e. LMod -> ( Scalar ` W ) = ( Scalar ` W ) ) |
|
| 4 | eqidd | |- ( W e. LMod -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
|
| 5 | 1 | a1i | |- ( W e. LMod -> V = ( Base ` W ) ) |
| 6 | eqidd | |- ( W e. LMod -> ( +g ` W ) = ( +g ` W ) ) |
|
| 7 | eqidd | |- ( W e. LMod -> ( .s ` W ) = ( .s ` W ) ) |
|
| 8 | 2 | a1i | |- ( W e. LMod -> S = ( LSubSp ` W ) ) |
| 9 | ssidd | |- ( W e. LMod -> V C_ V ) |
|
| 10 | 1 | lmodbn0 | |- ( W e. LMod -> V =/= (/) ) |
| 11 | simpl | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> W e. LMod ) |
|
| 12 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 13 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 14 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 15 | 1 12 13 14 | lmodvscl | |- ( ( W e. LMod /\ x e. ( Base ` ( Scalar ` W ) ) /\ a e. V ) -> ( x ( .s ` W ) a ) e. V ) |
| 16 | 15 | 3adant3r3 | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> ( x ( .s ` W ) a ) e. V ) |
| 17 | simpr3 | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> b e. V ) |
|
| 18 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 19 | 1 18 | lmodvacl | |- ( ( W e. LMod /\ ( x ( .s ` W ) a ) e. V /\ b e. V ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. V ) |
| 20 | 11 16 17 19 | syl3anc | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. V /\ b e. V ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. V ) |
| 21 | 3 4 5 6 7 8 9 10 20 | islssd | |- ( W e. LMod -> V e. S ) |