This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference with intersection. Theorem 33 of Suppes p. 29. (Contributed by NM, 31-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difin | |- ( A \ ( A i^i B ) ) = ( A \ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.61 | |- ( -. ( x e. A -> x e. B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 2 | anclb | |- ( ( x e. A -> x e. B ) <-> ( x e. A -> ( x e. A /\ x e. B ) ) ) |
|
| 3 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 4 | 3 | imbi2i | |- ( ( x e. A -> x e. ( A i^i B ) ) <-> ( x e. A -> ( x e. A /\ x e. B ) ) ) |
| 5 | iman | |- ( ( x e. A -> x e. ( A i^i B ) ) <-> -. ( x e. A /\ -. x e. ( A i^i B ) ) ) |
|
| 6 | 2 4 5 | 3bitr2i | |- ( ( x e. A -> x e. B ) <-> -. ( x e. A /\ -. x e. ( A i^i B ) ) ) |
| 7 | 6 | con2bii | |- ( ( x e. A /\ -. x e. ( A i^i B ) ) <-> -. ( x e. A -> x e. B ) ) |
| 8 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 9 | 1 7 8 | 3bitr4i | |- ( ( x e. A /\ -. x e. ( A i^i B ) ) <-> x e. ( A \ B ) ) |
| 10 | 9 | difeqri | |- ( A \ ( A i^i B ) ) = ( A \ B ) |