This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007) (Revised by Mario Carneiro, 6-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climshft2.1 | |- Z = ( ZZ>= ` M ) |
|
| climshft2.2 | |- ( ph -> M e. ZZ ) |
||
| climshft2.3 | |- ( ph -> K e. ZZ ) |
||
| climshft2.5 | |- ( ph -> F e. W ) |
||
| climshft2.6 | |- ( ph -> G e. X ) |
||
| climshft2.7 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + K ) ) = ( F ` k ) ) |
||
| Assertion | climshft2 | |- ( ph -> ( F ~~> A <-> G ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climshft2.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climshft2.3 | |- ( ph -> K e. ZZ ) |
|
| 4 | climshft2.5 | |- ( ph -> F e. W ) |
|
| 5 | climshft2.6 | |- ( ph -> G e. X ) |
|
| 6 | climshft2.7 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + K ) ) = ( F ` k ) ) |
|
| 7 | ovexd | |- ( ph -> ( G shift -u K ) e. _V ) |
|
| 8 | 3 | zcnd | |- ( ph -> K e. CC ) |
| 9 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 10 | 9 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 11 | 10 | zcnd | |- ( k e. Z -> k e. CC ) |
| 12 | fvex | |- ( _I ` G ) e. _V |
|
| 13 | 12 | shftval4 | |- ( ( K e. CC /\ k e. CC ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( _I ` G ) ` ( K + k ) ) ) |
| 14 | 8 11 13 | syl2an | |- ( ( ph /\ k e. Z ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( _I ` G ) ` ( K + k ) ) ) |
| 15 | fvi | |- ( G e. X -> ( _I ` G ) = G ) |
|
| 16 | 5 15 | syl | |- ( ph -> ( _I ` G ) = G ) |
| 17 | 16 | adantr | |- ( ( ph /\ k e. Z ) -> ( _I ` G ) = G ) |
| 18 | 17 | oveq1d | |- ( ( ph /\ k e. Z ) -> ( ( _I ` G ) shift -u K ) = ( G shift -u K ) ) |
| 19 | 18 | fveq1d | |- ( ( ph /\ k e. Z ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( G shift -u K ) ` k ) ) |
| 20 | addcom | |- ( ( K e. CC /\ k e. CC ) -> ( K + k ) = ( k + K ) ) |
|
| 21 | 8 11 20 | syl2an | |- ( ( ph /\ k e. Z ) -> ( K + k ) = ( k + K ) ) |
| 22 | 17 21 | fveq12d | |- ( ( ph /\ k e. Z ) -> ( ( _I ` G ) ` ( K + k ) ) = ( G ` ( k + K ) ) ) |
| 23 | 14 19 22 | 3eqtr3d | |- ( ( ph /\ k e. Z ) -> ( ( G shift -u K ) ` k ) = ( G ` ( k + K ) ) ) |
| 24 | 23 6 | eqtrd | |- ( ( ph /\ k e. Z ) -> ( ( G shift -u K ) ` k ) = ( F ` k ) ) |
| 25 | 1 7 4 2 24 | climeq | |- ( ph -> ( ( G shift -u K ) ~~> A <-> F ~~> A ) ) |
| 26 | 3 | znegcld | |- ( ph -> -u K e. ZZ ) |
| 27 | climshft | |- ( ( -u K e. ZZ /\ G e. X ) -> ( ( G shift -u K ) ~~> A <-> G ~~> A ) ) |
|
| 28 | 26 5 27 | syl2anc | |- ( ph -> ( ( G shift -u K ) ~~> A <-> G ~~> A ) ) |
| 29 | 25 28 | bitr3d | |- ( ph -> ( F ~~> A <-> G ~~> A ) ) |