This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcn.v | |- V = ( Base ` W ) |
|
| ipcn.h | |- ., = ( .i ` W ) |
||
| ipcn.d | |- D = ( dist ` W ) |
||
| ipcn.n | |- N = ( norm ` W ) |
||
| ipcn.t | |- T = ( ( R / 2 ) / ( ( N ` A ) + 1 ) ) |
||
| ipcn.u | |- U = ( ( R / 2 ) / ( ( N ` B ) + T ) ) |
||
| ipcn.w | |- ( ph -> W e. CPreHil ) |
||
| ipcn.a | |- ( ph -> A e. V ) |
||
| ipcn.b | |- ( ph -> B e. V ) |
||
| ipcn.r | |- ( ph -> R e. RR+ ) |
||
| ipcn.x | |- ( ph -> X e. V ) |
||
| ipcn.y | |- ( ph -> Y e. V ) |
||
| ipcn.1 | |- ( ph -> ( A D X ) < U ) |
||
| ipcn.2 | |- ( ph -> ( B D Y ) < T ) |
||
| Assertion | ipcnlem2 | |- ( ph -> ( abs ` ( ( A ., B ) - ( X ., Y ) ) ) < R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcn.v | |- V = ( Base ` W ) |
|
| 2 | ipcn.h | |- ., = ( .i ` W ) |
|
| 3 | ipcn.d | |- D = ( dist ` W ) |
|
| 4 | ipcn.n | |- N = ( norm ` W ) |
|
| 5 | ipcn.t | |- T = ( ( R / 2 ) / ( ( N ` A ) + 1 ) ) |
|
| 6 | ipcn.u | |- U = ( ( R / 2 ) / ( ( N ` B ) + T ) ) |
|
| 7 | ipcn.w | |- ( ph -> W e. CPreHil ) |
|
| 8 | ipcn.a | |- ( ph -> A e. V ) |
|
| 9 | ipcn.b | |- ( ph -> B e. V ) |
|
| 10 | ipcn.r | |- ( ph -> R e. RR+ ) |
|
| 11 | ipcn.x | |- ( ph -> X e. V ) |
|
| 12 | ipcn.y | |- ( ph -> Y e. V ) |
|
| 13 | ipcn.1 | |- ( ph -> ( A D X ) < U ) |
|
| 14 | ipcn.2 | |- ( ph -> ( B D Y ) < T ) |
|
| 15 | 1 2 | cphipcl | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) |
| 16 | 7 8 9 15 | syl3anc | |- ( ph -> ( A ., B ) e. CC ) |
| 17 | 1 2 | cphipcl | |- ( ( W e. CPreHil /\ X e. V /\ Y e. V ) -> ( X ., Y ) e. CC ) |
| 18 | 7 11 12 17 | syl3anc | |- ( ph -> ( X ., Y ) e. CC ) |
| 19 | 1 2 | cphipcl | |- ( ( W e. CPreHil /\ A e. V /\ Y e. V ) -> ( A ., Y ) e. CC ) |
| 20 | 7 8 12 19 | syl3anc | |- ( ph -> ( A ., Y ) e. CC ) |
| 21 | 10 | rpred | |- ( ph -> R e. RR ) |
| 22 | 16 20 | subcld | |- ( ph -> ( ( A ., B ) - ( A ., Y ) ) e. CC ) |
| 23 | 22 | abscld | |- ( ph -> ( abs ` ( ( A ., B ) - ( A ., Y ) ) ) e. RR ) |
| 24 | cphnlm | |- ( W e. CPreHil -> W e. NrmMod ) |
|
| 25 | 7 24 | syl | |- ( ph -> W e. NrmMod ) |
| 26 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 27 | 25 26 | syl | |- ( ph -> W e. NrmGrp ) |
| 28 | 1 4 | nmcl | |- ( ( W e. NrmGrp /\ A e. V ) -> ( N ` A ) e. RR ) |
| 29 | 27 8 28 | syl2anc | |- ( ph -> ( N ` A ) e. RR ) |
| 30 | 1 4 | nmge0 | |- ( ( W e. NrmGrp /\ A e. V ) -> 0 <_ ( N ` A ) ) |
| 31 | 27 8 30 | syl2anc | |- ( ph -> 0 <_ ( N ` A ) ) |
| 32 | 29 31 | ge0p1rpd | |- ( ph -> ( ( N ` A ) + 1 ) e. RR+ ) |
| 33 | 32 | rpred | |- ( ph -> ( ( N ` A ) + 1 ) e. RR ) |
| 34 | ngpms | |- ( W e. NrmGrp -> W e. MetSp ) |
|
| 35 | 27 34 | syl | |- ( ph -> W e. MetSp ) |
| 36 | 1 3 | mscl | |- ( ( W e. MetSp /\ B e. V /\ Y e. V ) -> ( B D Y ) e. RR ) |
| 37 | 35 9 12 36 | syl3anc | |- ( ph -> ( B D Y ) e. RR ) |
| 38 | 33 37 | remulcld | |- ( ph -> ( ( ( N ` A ) + 1 ) x. ( B D Y ) ) e. RR ) |
| 39 | 21 | rehalfcld | |- ( ph -> ( R / 2 ) e. RR ) |
| 40 | 29 37 | remulcld | |- ( ph -> ( ( N ` A ) x. ( B D Y ) ) e. RR ) |
| 41 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 42 | 2 1 41 | cphsubdi | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ Y e. V ) ) -> ( A ., ( B ( -g ` W ) Y ) ) = ( ( A ., B ) - ( A ., Y ) ) ) |
| 43 | 7 8 9 12 42 | syl13anc | |- ( ph -> ( A ., ( B ( -g ` W ) Y ) ) = ( ( A ., B ) - ( A ., Y ) ) ) |
| 44 | 43 | fveq2d | |- ( ph -> ( abs ` ( A ., ( B ( -g ` W ) Y ) ) ) = ( abs ` ( ( A ., B ) - ( A ., Y ) ) ) ) |
| 45 | ngpgrp | |- ( W e. NrmGrp -> W e. Grp ) |
|
| 46 | 27 45 | syl | |- ( ph -> W e. Grp ) |
| 47 | 1 41 | grpsubcl | |- ( ( W e. Grp /\ B e. V /\ Y e. V ) -> ( B ( -g ` W ) Y ) e. V ) |
| 48 | 46 9 12 47 | syl3anc | |- ( ph -> ( B ( -g ` W ) Y ) e. V ) |
| 49 | 1 2 4 | ipcau | |- ( ( W e. CPreHil /\ A e. V /\ ( B ( -g ` W ) Y ) e. V ) -> ( abs ` ( A ., ( B ( -g ` W ) Y ) ) ) <_ ( ( N ` A ) x. ( N ` ( B ( -g ` W ) Y ) ) ) ) |
| 50 | 7 8 48 49 | syl3anc | |- ( ph -> ( abs ` ( A ., ( B ( -g ` W ) Y ) ) ) <_ ( ( N ` A ) x. ( N ` ( B ( -g ` W ) Y ) ) ) ) |
| 51 | 4 1 41 3 | ngpds | |- ( ( W e. NrmGrp /\ B e. V /\ Y e. V ) -> ( B D Y ) = ( N ` ( B ( -g ` W ) Y ) ) ) |
| 52 | 27 9 12 51 | syl3anc | |- ( ph -> ( B D Y ) = ( N ` ( B ( -g ` W ) Y ) ) ) |
| 53 | 52 | oveq2d | |- ( ph -> ( ( N ` A ) x. ( B D Y ) ) = ( ( N ` A ) x. ( N ` ( B ( -g ` W ) Y ) ) ) ) |
| 54 | 50 53 | breqtrrd | |- ( ph -> ( abs ` ( A ., ( B ( -g ` W ) Y ) ) ) <_ ( ( N ` A ) x. ( B D Y ) ) ) |
| 55 | 44 54 | eqbrtrrd | |- ( ph -> ( abs ` ( ( A ., B ) - ( A ., Y ) ) ) <_ ( ( N ` A ) x. ( B D Y ) ) ) |
| 56 | msxms | |- ( W e. MetSp -> W e. *MetSp ) |
|
| 57 | 35 56 | syl | |- ( ph -> W e. *MetSp ) |
| 58 | 1 3 | xmsge0 | |- ( ( W e. *MetSp /\ B e. V /\ Y e. V ) -> 0 <_ ( B D Y ) ) |
| 59 | 57 9 12 58 | syl3anc | |- ( ph -> 0 <_ ( B D Y ) ) |
| 60 | 29 | lep1d | |- ( ph -> ( N ` A ) <_ ( ( N ` A ) + 1 ) ) |
| 61 | 29 33 37 59 60 | lemul1ad | |- ( ph -> ( ( N ` A ) x. ( B D Y ) ) <_ ( ( ( N ` A ) + 1 ) x. ( B D Y ) ) ) |
| 62 | 23 40 38 55 61 | letrd | |- ( ph -> ( abs ` ( ( A ., B ) - ( A ., Y ) ) ) <_ ( ( ( N ` A ) + 1 ) x. ( B D Y ) ) ) |
| 63 | 14 5 | breqtrdi | |- ( ph -> ( B D Y ) < ( ( R / 2 ) / ( ( N ` A ) + 1 ) ) ) |
| 64 | 37 39 32 | ltmuldiv2d | |- ( ph -> ( ( ( ( N ` A ) + 1 ) x. ( B D Y ) ) < ( R / 2 ) <-> ( B D Y ) < ( ( R / 2 ) / ( ( N ` A ) + 1 ) ) ) ) |
| 65 | 63 64 | mpbird | |- ( ph -> ( ( ( N ` A ) + 1 ) x. ( B D Y ) ) < ( R / 2 ) ) |
| 66 | 23 38 39 62 65 | lelttrd | |- ( ph -> ( abs ` ( ( A ., B ) - ( A ., Y ) ) ) < ( R / 2 ) ) |
| 67 | 20 18 | subcld | |- ( ph -> ( ( A ., Y ) - ( X ., Y ) ) e. CC ) |
| 68 | 67 | abscld | |- ( ph -> ( abs ` ( ( A ., Y ) - ( X ., Y ) ) ) e. RR ) |
| 69 | 1 3 | mscl | |- ( ( W e. MetSp /\ A e. V /\ X e. V ) -> ( A D X ) e. RR ) |
| 70 | 35 8 11 69 | syl3anc | |- ( ph -> ( A D X ) e. RR ) |
| 71 | 1 4 | nmcl | |- ( ( W e. NrmGrp /\ B e. V ) -> ( N ` B ) e. RR ) |
| 72 | 27 9 71 | syl2anc | |- ( ph -> ( N ` B ) e. RR ) |
| 73 | 10 | rphalfcld | |- ( ph -> ( R / 2 ) e. RR+ ) |
| 74 | 73 32 | rpdivcld | |- ( ph -> ( ( R / 2 ) / ( ( N ` A ) + 1 ) ) e. RR+ ) |
| 75 | 5 74 | eqeltrid | |- ( ph -> T e. RR+ ) |
| 76 | 75 | rpred | |- ( ph -> T e. RR ) |
| 77 | 72 76 | readdcld | |- ( ph -> ( ( N ` B ) + T ) e. RR ) |
| 78 | 70 77 | remulcld | |- ( ph -> ( ( A D X ) x. ( ( N ` B ) + T ) ) e. RR ) |
| 79 | 1 4 | nmcl | |- ( ( W e. NrmGrp /\ Y e. V ) -> ( N ` Y ) e. RR ) |
| 80 | 27 12 79 | syl2anc | |- ( ph -> ( N ` Y ) e. RR ) |
| 81 | 70 80 | remulcld | |- ( ph -> ( ( A D X ) x. ( N ` Y ) ) e. RR ) |
| 82 | 2 1 41 | cphsubdir | |- ( ( W e. CPreHil /\ ( A e. V /\ X e. V /\ Y e. V ) ) -> ( ( A ( -g ` W ) X ) ., Y ) = ( ( A ., Y ) - ( X ., Y ) ) ) |
| 83 | 7 8 11 12 82 | syl13anc | |- ( ph -> ( ( A ( -g ` W ) X ) ., Y ) = ( ( A ., Y ) - ( X ., Y ) ) ) |
| 84 | 83 | fveq2d | |- ( ph -> ( abs ` ( ( A ( -g ` W ) X ) ., Y ) ) = ( abs ` ( ( A ., Y ) - ( X ., Y ) ) ) ) |
| 85 | 1 41 | grpsubcl | |- ( ( W e. Grp /\ A e. V /\ X e. V ) -> ( A ( -g ` W ) X ) e. V ) |
| 86 | 46 8 11 85 | syl3anc | |- ( ph -> ( A ( -g ` W ) X ) e. V ) |
| 87 | 1 2 4 | ipcau | |- ( ( W e. CPreHil /\ ( A ( -g ` W ) X ) e. V /\ Y e. V ) -> ( abs ` ( ( A ( -g ` W ) X ) ., Y ) ) <_ ( ( N ` ( A ( -g ` W ) X ) ) x. ( N ` Y ) ) ) |
| 88 | 7 86 12 87 | syl3anc | |- ( ph -> ( abs ` ( ( A ( -g ` W ) X ) ., Y ) ) <_ ( ( N ` ( A ( -g ` W ) X ) ) x. ( N ` Y ) ) ) |
| 89 | 4 1 41 3 | ngpds | |- ( ( W e. NrmGrp /\ A e. V /\ X e. V ) -> ( A D X ) = ( N ` ( A ( -g ` W ) X ) ) ) |
| 90 | 27 8 11 89 | syl3anc | |- ( ph -> ( A D X ) = ( N ` ( A ( -g ` W ) X ) ) ) |
| 91 | 90 | oveq1d | |- ( ph -> ( ( A D X ) x. ( N ` Y ) ) = ( ( N ` ( A ( -g ` W ) X ) ) x. ( N ` Y ) ) ) |
| 92 | 88 91 | breqtrrd | |- ( ph -> ( abs ` ( ( A ( -g ` W ) X ) ., Y ) ) <_ ( ( A D X ) x. ( N ` Y ) ) ) |
| 93 | 84 92 | eqbrtrrd | |- ( ph -> ( abs ` ( ( A ., Y ) - ( X ., Y ) ) ) <_ ( ( A D X ) x. ( N ` Y ) ) ) |
| 94 | 1 3 | xmsge0 | |- ( ( W e. *MetSp /\ A e. V /\ X e. V ) -> 0 <_ ( A D X ) ) |
| 95 | 57 8 11 94 | syl3anc | |- ( ph -> 0 <_ ( A D X ) ) |
| 96 | 80 72 | resubcld | |- ( ph -> ( ( N ` Y ) - ( N ` B ) ) e. RR ) |
| 97 | 1 4 41 | nm2dif | |- ( ( W e. NrmGrp /\ Y e. V /\ B e. V ) -> ( ( N ` Y ) - ( N ` B ) ) <_ ( N ` ( Y ( -g ` W ) B ) ) ) |
| 98 | 27 12 9 97 | syl3anc | |- ( ph -> ( ( N ` Y ) - ( N ` B ) ) <_ ( N ` ( Y ( -g ` W ) B ) ) ) |
| 99 | 4 1 41 3 | ngpdsr | |- ( ( W e. NrmGrp /\ B e. V /\ Y e. V ) -> ( B D Y ) = ( N ` ( Y ( -g ` W ) B ) ) ) |
| 100 | 27 9 12 99 | syl3anc | |- ( ph -> ( B D Y ) = ( N ` ( Y ( -g ` W ) B ) ) ) |
| 101 | 98 100 | breqtrrd | |- ( ph -> ( ( N ` Y ) - ( N ` B ) ) <_ ( B D Y ) ) |
| 102 | 37 76 14 | ltled | |- ( ph -> ( B D Y ) <_ T ) |
| 103 | 96 37 76 101 102 | letrd | |- ( ph -> ( ( N ` Y ) - ( N ` B ) ) <_ T ) |
| 104 | 80 72 76 | lesubadd2d | |- ( ph -> ( ( ( N ` Y ) - ( N ` B ) ) <_ T <-> ( N ` Y ) <_ ( ( N ` B ) + T ) ) ) |
| 105 | 103 104 | mpbid | |- ( ph -> ( N ` Y ) <_ ( ( N ` B ) + T ) ) |
| 106 | 80 77 70 95 105 | lemul2ad | |- ( ph -> ( ( A D X ) x. ( N ` Y ) ) <_ ( ( A D X ) x. ( ( N ` B ) + T ) ) ) |
| 107 | 68 81 78 93 106 | letrd | |- ( ph -> ( abs ` ( ( A ., Y ) - ( X ., Y ) ) ) <_ ( ( A D X ) x. ( ( N ` B ) + T ) ) ) |
| 108 | 13 6 | breqtrdi | |- ( ph -> ( A D X ) < ( ( R / 2 ) / ( ( N ` B ) + T ) ) ) |
| 109 | 0red | |- ( ph -> 0 e. RR ) |
|
| 110 | 1 4 | nmge0 | |- ( ( W e. NrmGrp /\ B e. V ) -> 0 <_ ( N ` B ) ) |
| 111 | 27 9 110 | syl2anc | |- ( ph -> 0 <_ ( N ` B ) ) |
| 112 | 72 75 | ltaddrpd | |- ( ph -> ( N ` B ) < ( ( N ` B ) + T ) ) |
| 113 | 109 72 77 111 112 | lelttrd | |- ( ph -> 0 < ( ( N ` B ) + T ) ) |
| 114 | ltmuldiv | |- ( ( ( A D X ) e. RR /\ ( R / 2 ) e. RR /\ ( ( ( N ` B ) + T ) e. RR /\ 0 < ( ( N ` B ) + T ) ) ) -> ( ( ( A D X ) x. ( ( N ` B ) + T ) ) < ( R / 2 ) <-> ( A D X ) < ( ( R / 2 ) / ( ( N ` B ) + T ) ) ) ) |
|
| 115 | 70 39 77 113 114 | syl112anc | |- ( ph -> ( ( ( A D X ) x. ( ( N ` B ) + T ) ) < ( R / 2 ) <-> ( A D X ) < ( ( R / 2 ) / ( ( N ` B ) + T ) ) ) ) |
| 116 | 108 115 | mpbird | |- ( ph -> ( ( A D X ) x. ( ( N ` B ) + T ) ) < ( R / 2 ) ) |
| 117 | 68 78 39 107 116 | lelttrd | |- ( ph -> ( abs ` ( ( A ., Y ) - ( X ., Y ) ) ) < ( R / 2 ) ) |
| 118 | 16 18 20 21 66 117 | abs3lemd | |- ( ph -> ( abs ` ( ( A ., B ) - ( X ., Y ) ) ) < R ) |