This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscld.1 | |- ( ph -> A e. CC ) |
|
| abssubd.2 | |- ( ph -> B e. CC ) |
||
| abs3difd.3 | |- ( ph -> C e. CC ) |
||
| abs3lemd.4 | |- ( ph -> D e. RR ) |
||
| abs3lemd.5 | |- ( ph -> ( abs ` ( A - C ) ) < ( D / 2 ) ) |
||
| abs3lemd.6 | |- ( ph -> ( abs ` ( C - B ) ) < ( D / 2 ) ) |
||
| Assertion | abs3lemd | |- ( ph -> ( abs ` ( A - B ) ) < D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | |- ( ph -> A e. CC ) |
|
| 2 | abssubd.2 | |- ( ph -> B e. CC ) |
|
| 3 | abs3difd.3 | |- ( ph -> C e. CC ) |
|
| 4 | abs3lemd.4 | |- ( ph -> D e. RR ) |
|
| 5 | abs3lemd.5 | |- ( ph -> ( abs ` ( A - C ) ) < ( D / 2 ) ) |
|
| 6 | abs3lemd.6 | |- ( ph -> ( abs ` ( C - B ) ) < ( D / 2 ) ) |
|
| 7 | abs3lem | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. RR ) ) -> ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < D ) ) |
|
| 8 | 1 2 3 4 7 | syl22anc | |- ( ph -> ( ( ( abs ` ( A - C ) ) < ( D / 2 ) /\ ( abs ` ( C - B ) ) < ( D / 2 ) ) -> ( abs ` ( A - B ) ) < D ) ) |
| 9 | 5 6 8 | mp2and | |- ( ph -> ( abs ` ( A - B ) ) < D ) |