This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | |- V = ( Base ` W ) |
|
| nmsq.h | |- ., = ( .i ` W ) |
||
| Assertion | cphipcl | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | |- V = ( Base ` W ) |
|
| 2 | nmsq.h | |- ., = ( .i ` W ) |
|
| 3 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 4 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 5 | 3 4 | cphsubrg | |- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) ) |
| 6 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 7 | 6 | subrgss | |- ( ( Base ` ( Scalar ` W ) ) e. ( SubRing ` CCfld ) -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
| 8 | 5 7 | syl | |- ( W e. CPreHil -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
| 9 | 8 | 3ad2ant1 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( Base ` ( Scalar ` W ) ) C_ CC ) |
| 10 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 11 | 3 2 1 4 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 12 | 10 11 | syl3an1 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 13 | 9 12 | sseldd | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) |