This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function in terms of the norm of a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpds.n | |- N = ( norm ` G ) |
|
| ngpds.x | |- X = ( Base ` G ) |
||
| ngpds.m | |- .- = ( -g ` G ) |
||
| ngpds.d | |- D = ( dist ` G ) |
||
| Assertion | ngpdsr | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( B .- A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds.n | |- N = ( norm ` G ) |
|
| 2 | ngpds.x | |- X = ( Base ` G ) |
|
| 3 | ngpds.m | |- .- = ( -g ` G ) |
|
| 4 | ngpds.d | |- D = ( dist ` G ) |
|
| 5 | ngpxms | |- ( G e. NrmGrp -> G e. *MetSp ) |
|
| 6 | 2 4 | xmssym | |- ( ( G e. *MetSp /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
| 7 | 5 6 | syl3an1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
| 8 | 1 2 3 4 | ngpds | |- ( ( G e. NrmGrp /\ B e. X /\ A e. X ) -> ( B D A ) = ( N ` ( B .- A ) ) ) |
| 9 | 8 | 3com23 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( B D A ) = ( N ` ( B .- A ) ) ) |
| 10 | 7 9 | eqtrd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( B .- A ) ) ) |