This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mscl.x | |- X = ( Base ` M ) |
|
| mscl.d | |- D = ( dist ` M ) |
||
| Assertion | mscl | |- ( ( M e. MetSp /\ A e. X /\ B e. X ) -> ( A D B ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | |- X = ( Base ` M ) |
|
| 2 | mscl.d | |- D = ( dist ` M ) |
|
| 3 | ovres | |- ( ( A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
|
| 4 | 3 | 3adant1 | |- ( ( M e. MetSp /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
| 5 | 1 2 | msmet2 | |- ( M e. MetSp -> ( D |` ( X X. X ) ) e. ( Met ` X ) ) |
| 6 | metcl | |- ( ( ( D |` ( X X. X ) ) e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) e. RR ) |
|
| 7 | 5 6 | syl3an1 | |- ( ( M e. MetSp /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) e. RR ) |
| 8 | 4 7 | eqeltrrd | |- ( ( M e. MetSp /\ A e. X /\ B e. X ) -> ( A D B ) e. RR ) |