This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpds.n | |- N = ( norm ` G ) |
|
| ngpds.x | |- X = ( Base ` G ) |
||
| ngpds.m | |- .- = ( -g ` G ) |
||
| ngpds.d | |- D = ( dist ` G ) |
||
| Assertion | ngpds | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A .- B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds.n | |- N = ( norm ` G ) |
|
| 2 | ngpds.x | |- X = ( Base ` G ) |
|
| 3 | ngpds.m | |- .- = ( -g ` G ) |
|
| 4 | ngpds.d | |- D = ( dist ` G ) |
|
| 5 | eqid | |- ( D |` ( X X. X ) ) = ( D |` ( X X. X ) ) |
|
| 6 | 1 3 4 2 5 | isngp2 | |- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = ( D |` ( X X. X ) ) ) ) |
| 7 | 6 | simp3bi | |- ( G e. NrmGrp -> ( N o. .- ) = ( D |` ( X X. X ) ) ) |
| 8 | 7 | 3ad2ant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N o. .- ) = ( D |` ( X X. X ) ) ) |
| 9 | 8 | oveqd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( N o. .- ) B ) = ( A ( D |` ( X X. X ) ) B ) ) |
| 10 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 11 | 2 3 | grpsubf | |- ( G e. Grp -> .- : ( X X. X ) --> X ) |
| 12 | 10 11 | syl | |- ( G e. NrmGrp -> .- : ( X X. X ) --> X ) |
| 13 | 12 | 3ad2ant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> .- : ( X X. X ) --> X ) |
| 14 | opelxpi | |- ( ( A e. X /\ B e. X ) -> <. A , B >. e. ( X X. X ) ) |
|
| 15 | 14 | 3adant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> <. A , B >. e. ( X X. X ) ) |
| 16 | fvco3 | |- ( ( .- : ( X X. X ) --> X /\ <. A , B >. e. ( X X. X ) ) -> ( ( N o. .- ) ` <. A , B >. ) = ( N ` ( .- ` <. A , B >. ) ) ) |
|
| 17 | 13 15 16 | syl2anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N o. .- ) ` <. A , B >. ) = ( N ` ( .- ` <. A , B >. ) ) ) |
| 18 | df-ov | |- ( A ( N o. .- ) B ) = ( ( N o. .- ) ` <. A , B >. ) |
|
| 19 | df-ov | |- ( A .- B ) = ( .- ` <. A , B >. ) |
|
| 20 | 19 | fveq2i | |- ( N ` ( A .- B ) ) = ( N ` ( .- ` <. A , B >. ) ) |
| 21 | 17 18 20 | 3eqtr4g | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( N o. .- ) B ) = ( N ` ( A .- B ) ) ) |
| 22 | ovres | |- ( ( A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
|
| 23 | 22 | 3adant1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
| 24 | 9 21 23 | 3eqtr3rd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A .- B ) ) ) |