This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ipcn.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| ipcn.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | ||
| ipcn.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| ipcn.t | ⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) | ||
| ipcn.u | ⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) | ||
| ipcn.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | ||
| ipcn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ipcn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| ipcn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| ipcn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| ipcn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| ipcn.1 | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) < 𝑈 ) | ||
| ipcn.2 | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) < 𝑇 ) | ||
| Assertion | ipcnlem2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝑋 , 𝑌 ) ) ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ipcn.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | ipcn.d | ⊢ 𝐷 = ( dist ‘ 𝑊 ) | |
| 4 | ipcn.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 5 | ipcn.t | ⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) | |
| 6 | ipcn.u | ⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) | |
| 7 | ipcn.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | |
| 8 | ipcn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 9 | ipcn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 10 | ipcn.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 11 | ipcn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 12 | ipcn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 13 | ipcn.1 | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) < 𝑈 ) | |
| 14 | ipcn.2 | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) < 𝑇 ) | |
| 15 | 1 2 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
| 16 | 7 8 9 15 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
| 17 | 1 2 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
| 18 | 7 11 12 17 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
| 19 | 1 2 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 , 𝑌 ) ∈ ℂ ) |
| 20 | 7 8 12 19 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝑌 ) ∈ ℂ ) |
| 21 | 10 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 22 | 16 20 | subcld | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ∈ ℂ ) |
| 23 | 22 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ∈ ℝ ) |
| 24 | cphnlm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) | |
| 25 | 7 24 | syl | ⊢ ( 𝜑 → 𝑊 ∈ NrmMod ) |
| 26 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
| 28 | 1 4 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 29 | 27 8 28 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 30 | 1 4 | nmge0 | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 31 | 27 8 30 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 32 | 29 31 | ge0p1rpd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) |
| 33 | 32 | rpred | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 34 | ngpms | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) | |
| 35 | 27 34 | syl | ⊢ ( 𝜑 → 𝑊 ∈ MetSp ) |
| 36 | 1 3 | mscl | ⊢ ( ( 𝑊 ∈ MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 𝐷 𝑌 ) ∈ ℝ ) |
| 37 | 35 9 12 36 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) ∈ ℝ ) |
| 38 | 33 37 | remulcld | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) ∈ ℝ ) |
| 39 | 21 | rehalfcld | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ ) |
| 40 | 29 37 | remulcld | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ∈ ℝ ) |
| 41 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 42 | 2 1 41 | cphsubdi | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) |
| 43 | 7 8 9 12 42 | syl13anc | ⊢ ( 𝜑 → ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) |
| 44 | 43 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) = ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ) |
| 45 | ngpgrp | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ Grp ) | |
| 46 | 27 45 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 47 | 1 41 | grpsubcl | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 48 | 46 9 12 47 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 49 | 1 2 4 | ipcau | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ) |
| 50 | 7 8 48 49 | syl3anc | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ) |
| 51 | 4 1 41 3 | ngpds | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) |
| 52 | 27 9 12 51 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) |
| 53 | 52 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ) |
| 54 | 50 53 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
| 55 | 44 54 | eqbrtrrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
| 56 | msxms | ⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) | |
| 57 | 35 56 | syl | ⊢ ( 𝜑 → 𝑊 ∈ ∞MetSp ) |
| 58 | 1 3 | xmsge0 | ⊢ ( ( 𝑊 ∈ ∞MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 0 ≤ ( 𝐵 𝐷 𝑌 ) ) |
| 59 | 57 9 12 58 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐵 𝐷 𝑌 ) ) |
| 60 | 29 | lep1d | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ≤ ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) |
| 61 | 29 33 37 59 60 | lemul1ad | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
| 62 | 23 40 38 55 61 | letrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
| 63 | 14 5 | breqtrdi | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) ) |
| 64 | 37 39 32 | ltmuldiv2d | ⊢ ( 𝜑 → ( ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐵 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) ) ) |
| 65 | 63 64 | mpbird | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ) |
| 66 | 23 38 39 62 65 | lelttrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) < ( 𝑅 / 2 ) ) |
| 67 | 20 18 | subcld | ⊢ ( 𝜑 → ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ∈ ℂ ) |
| 68 | 67 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ∈ ℝ ) |
| 69 | 1 3 | mscl | ⊢ ( ( 𝑊 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 𝐷 𝑋 ) ∈ ℝ ) |
| 70 | 35 8 11 69 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) ∈ ℝ ) |
| 71 | 1 4 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
| 72 | 27 9 71 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
| 73 | 10 | rphalfcld | ⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ+ ) |
| 74 | 73 32 | rpdivcld | ⊢ ( 𝜑 → ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) ∈ ℝ+ ) |
| 75 | 5 74 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 76 | 75 | rpred | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 77 | 72 76 | readdcld | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ∈ ℝ ) |
| 78 | 70 77 | remulcld | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ∈ ℝ ) |
| 79 | 1 4 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
| 80 | 27 12 79 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
| 81 | 70 80 | remulcld | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ∈ ℝ ) |
| 82 | 2 1 41 | cphsubdir | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) = ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) |
| 83 | 7 8 11 12 82 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) = ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) |
| 84 | 83 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) = ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ) |
| 85 | 1 41 | grpsubcl | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) |
| 86 | 46 8 11 85 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) |
| 87 | 1 2 4 | ipcau | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 88 | 7 86 12 87 | syl3anc | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 89 | 4 1 41 3 | ngpds | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 𝐷 𝑋 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 90 | 27 8 11 89 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 91 | 90 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 92 | 88 91 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 93 | 84 92 | eqbrtrrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 94 | 1 3 | xmsge0 | ⊢ ( ( 𝑊 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝐴 𝐷 𝑋 ) ) |
| 95 | 57 8 11 94 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 𝐷 𝑋 ) ) |
| 96 | 80 72 | resubcld | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ∈ ℝ ) |
| 97 | 1 4 41 | nm2dif | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
| 98 | 27 12 9 97 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
| 99 | 4 1 41 3 | ngpdsr | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
| 100 | 27 9 12 99 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
| 101 | 98 100 | breqtrrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝐵 𝐷 𝑌 ) ) |
| 102 | 37 76 14 | ltled | ⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) ≤ 𝑇 ) |
| 103 | 96 37 76 101 102 | letrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ 𝑇 ) |
| 104 | 80 72 76 | lesubadd2d | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ 𝑇 ↔ ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
| 105 | 103 104 | mpbid | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) |
| 106 | 80 77 70 95 105 | lemul2ad | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
| 107 | 68 81 78 93 106 | letrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
| 108 | 13 6 | breqtrdi | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
| 109 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 110 | 1 4 | nmge0 | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐵 ) ) |
| 111 | 27 9 110 | syl2anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐵 ) ) |
| 112 | 72 75 | ltaddrpd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐵 ) < ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) |
| 113 | 109 72 77 111 112 | lelttrd | ⊢ ( 𝜑 → 0 < ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) |
| 114 | ltmuldiv | ⊢ ( ( ( 𝐴 𝐷 𝑋 ) ∈ ℝ ∧ ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ∈ ℝ ∧ 0 < ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) → ( ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐴 𝐷 𝑋 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) ) | |
| 115 | 70 39 77 113 114 | syl112anc | ⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐴 𝐷 𝑋 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) ) |
| 116 | 108 115 | mpbird | ⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ) |
| 117 | 68 78 39 107 116 | lelttrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) < ( 𝑅 / 2 ) ) |
| 118 | 16 18 20 21 66 117 | abs3lemd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝑋 , 𝑌 ) ) ) < 𝑅 ) |