This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| nmmtri.m | |- .- = ( -g ` G ) |
||
| Assertion | nm2dif | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) - ( N ` B ) ) <_ ( N ` ( A .- B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | nmmtri.m | |- .- = ( -g ` G ) |
|
| 4 | 1 2 | nmcl | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |
| 5 | 4 | 3adant3 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` A ) e. RR ) |
| 6 | 1 2 | nmcl | |- ( ( G e. NrmGrp /\ B e. X ) -> ( N ` B ) e. RR ) |
| 7 | 6 | 3adant2 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` B ) e. RR ) |
| 8 | 5 7 | resubcld | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) - ( N ` B ) ) e. RR ) |
| 9 | 8 | recnd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) - ( N ` B ) ) e. CC ) |
| 10 | 9 | abscld | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( abs ` ( ( N ` A ) - ( N ` B ) ) ) e. RR ) |
| 11 | simp1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. NrmGrp ) |
|
| 12 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 13 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 14 | 12 13 | syl3an1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 15 | 1 2 | nmcl | |- ( ( G e. NrmGrp /\ ( A .- B ) e. X ) -> ( N ` ( A .- B ) ) e. RR ) |
| 16 | 11 14 15 | syl2anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A .- B ) ) e. RR ) |
| 17 | 8 | leabsd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) - ( N ` B ) ) <_ ( abs ` ( ( N ` A ) - ( N ` B ) ) ) ) |
| 18 | 1 2 3 | nmrtri | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( abs ` ( ( N ` A ) - ( N ` B ) ) ) <_ ( N ` ( A .- B ) ) ) |
| 19 | 8 10 16 17 18 | letrd | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N ` A ) - ( N ` B ) ) <_ ( N ` ( A .- B ) ) ) |