This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. Complex version of ipsubdi . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphsubdir.m | |- .- = ( -g ` W ) |
||
| Assertion | cphsubdi | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) - ( A ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphsubdir.m | |- .- = ( -g ` W ) |
|
| 4 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
|
| 7 | 5 1 2 3 6 | ipsubdi | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 8 | 4 7 | sylan | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 9 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 10 | 9 | adantr | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. CMod ) |
| 11 | 4 | adantr | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) |
| 12 | simpr1 | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
|
| 13 | simpr2 | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
|
| 14 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 15 | 5 1 2 14 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 16 | 11 12 13 15 | syl3anc | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., B ) e. ( Base ` ( Scalar ` W ) ) ) |
| 17 | simpr3 | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
|
| 18 | 5 1 2 14 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 19 | 11 12 17 18 | syl3anc | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 20 | 5 14 | clmsub | |- ( ( W e. CMod /\ ( A ., B ) e. ( Base ` ( Scalar ` W ) ) /\ ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., B ) - ( A ., C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 21 | 10 16 19 20 | syl3anc | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A ., B ) - ( A ., C ) ) = ( ( A ., B ) ( -g ` ( Scalar ` W ) ) ( A ., C ) ) ) |
| 22 | 8 21 | eqtr4d | |- ( ( W e. CPreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .- C ) ) = ( ( A ., B ) - ( A ., C ) ) ) |