This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mscl.x | |- X = ( Base ` M ) |
|
| mscl.d | |- D = ( dist ` M ) |
||
| Assertion | xmsge0 | |- ( ( M e. *MetSp /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | |- X = ( Base ` M ) |
|
| 2 | mscl.d | |- D = ( dist ` M ) |
|
| 3 | 1 2 | xmsxmet2 | |- ( M e. *MetSp -> ( D |` ( X X. X ) ) e. ( *Met ` X ) ) |
| 4 | xmetge0 | |- ( ( ( D |` ( X X. X ) ) e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A ( D |` ( X X. X ) ) B ) ) |
|
| 5 | 3 4 | syl3an1 | |- ( ( M e. *MetSp /\ A e. X /\ B e. X ) -> 0 <_ ( A ( D |` ( X X. X ) ) B ) ) |
| 6 | ovres | |- ( ( A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
|
| 7 | 6 | 3adant1 | |- ( ( M e. *MetSp /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
| 8 | 5 7 | breqtrd | |- ( ( M e. *MetSp /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |