This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem1.b | |- B e. X |
||
| Assertion | ipasslem2 | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N S A ) P B ) = ( -u N x. ( A P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem1.b | |- B e. X |
|
| 7 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 8 | 7 | negcld | |- ( N e. NN0 -> -u N e. CC ) |
| 9 | 5 | phnvi | |- U e. NrmCVec |
| 10 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 11 | 9 6 10 | mp3an13 | |- ( A e. X -> ( A P B ) e. CC ) |
| 12 | mulcl | |- ( ( -u N e. CC /\ ( A P B ) e. CC ) -> ( -u N x. ( A P B ) ) e. CC ) |
|
| 13 | 8 11 12 | syl2an | |- ( ( N e. NN0 /\ A e. X ) -> ( -u N x. ( A P B ) ) e. CC ) |
| 14 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u N e. CC /\ A e. X ) -> ( -u N S A ) e. X ) |
| 15 | 9 14 | mp3an1 | |- ( ( -u N e. CC /\ A e. X ) -> ( -u N S A ) e. X ) |
| 16 | 8 15 | sylan | |- ( ( N e. NN0 /\ A e. X ) -> ( -u N S A ) e. X ) |
| 17 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ ( -u N S A ) e. X /\ B e. X ) -> ( ( -u N S A ) P B ) e. CC ) |
| 18 | 9 6 17 | mp3an13 | |- ( ( -u N S A ) e. X -> ( ( -u N S A ) P B ) e. CC ) |
| 19 | 16 18 | syl | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N S A ) P B ) e. CC ) |
| 20 | ax-1cn | |- 1 e. CC |
|
| 21 | mulneg2 | |- ( ( N e. CC /\ 1 e. CC ) -> ( N x. -u 1 ) = -u ( N x. 1 ) ) |
|
| 22 | 20 21 | mpan2 | |- ( N e. CC -> ( N x. -u 1 ) = -u ( N x. 1 ) ) |
| 23 | mulrid | |- ( N e. CC -> ( N x. 1 ) = N ) |
|
| 24 | 23 | negeqd | |- ( N e. CC -> -u ( N x. 1 ) = -u N ) |
| 25 | 22 24 | eqtr2d | |- ( N e. CC -> -u N = ( N x. -u 1 ) ) |
| 26 | 25 | adantr | |- ( ( N e. CC /\ A e. X ) -> -u N = ( N x. -u 1 ) ) |
| 27 | 26 | oveq1d | |- ( ( N e. CC /\ A e. X ) -> ( -u N S A ) = ( ( N x. -u 1 ) S A ) ) |
| 28 | neg1cn | |- -u 1 e. CC |
|
| 29 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( N e. CC /\ -u 1 e. CC /\ A e. X ) ) -> ( ( N x. -u 1 ) S A ) = ( N S ( -u 1 S A ) ) ) |
| 30 | 9 29 | mpan | |- ( ( N e. CC /\ -u 1 e. CC /\ A e. X ) -> ( ( N x. -u 1 ) S A ) = ( N S ( -u 1 S A ) ) ) |
| 31 | 28 30 | mp3an2 | |- ( ( N e. CC /\ A e. X ) -> ( ( N x. -u 1 ) S A ) = ( N S ( -u 1 S A ) ) ) |
| 32 | 27 31 | eqtrd | |- ( ( N e. CC /\ A e. X ) -> ( -u N S A ) = ( N S ( -u 1 S A ) ) ) |
| 33 | 7 32 | sylan | |- ( ( N e. NN0 /\ A e. X ) -> ( -u N S A ) = ( N S ( -u 1 S A ) ) ) |
| 34 | 33 | oveq1d | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N S A ) P B ) = ( ( N S ( -u 1 S A ) ) P B ) ) |
| 35 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 36 | 9 28 35 | mp3an12 | |- ( A e. X -> ( -u 1 S A ) e. X ) |
| 37 | 1 2 3 4 5 6 | ipasslem1 | |- ( ( N e. NN0 /\ ( -u 1 S A ) e. X ) -> ( ( N S ( -u 1 S A ) ) P B ) = ( N x. ( ( -u 1 S A ) P B ) ) ) |
| 38 | 36 37 | sylan2 | |- ( ( N e. NN0 /\ A e. X ) -> ( ( N S ( -u 1 S A ) ) P B ) = ( N x. ( ( -u 1 S A ) P B ) ) ) |
| 39 | 34 38 | eqtrd | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N S A ) P B ) = ( N x. ( ( -u 1 S A ) P B ) ) ) |
| 40 | 39 | oveq2d | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N x. ( A P B ) ) - ( ( -u N S A ) P B ) ) = ( ( -u N x. ( A P B ) ) - ( N x. ( ( -u 1 S A ) P B ) ) ) ) |
| 41 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ ( -u 1 S A ) e. X /\ B e. X ) -> ( ( -u 1 S A ) P B ) e. CC ) |
| 42 | 9 6 41 | mp3an13 | |- ( ( -u 1 S A ) e. X -> ( ( -u 1 S A ) P B ) e. CC ) |
| 43 | 36 42 | syl | |- ( A e. X -> ( ( -u 1 S A ) P B ) e. CC ) |
| 44 | mulcl | |- ( ( N e. CC /\ ( ( -u 1 S A ) P B ) e. CC ) -> ( N x. ( ( -u 1 S A ) P B ) ) e. CC ) |
|
| 45 | 7 43 44 | syl2an | |- ( ( N e. NN0 /\ A e. X ) -> ( N x. ( ( -u 1 S A ) P B ) ) e. CC ) |
| 46 | 13 45 | negsubd | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N x. ( A P B ) ) + -u ( N x. ( ( -u 1 S A ) P B ) ) ) = ( ( -u N x. ( A P B ) ) - ( N x. ( ( -u 1 S A ) P B ) ) ) ) |
| 47 | mulneg1 | |- ( ( N e. CC /\ ( ( -u 1 S A ) P B ) e. CC ) -> ( -u N x. ( ( -u 1 S A ) P B ) ) = -u ( N x. ( ( -u 1 S A ) P B ) ) ) |
|
| 48 | 7 43 47 | syl2an | |- ( ( N e. NN0 /\ A e. X ) -> ( -u N x. ( ( -u 1 S A ) P B ) ) = -u ( N x. ( ( -u 1 S A ) P B ) ) ) |
| 49 | 48 | oveq2d | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N x. ( A P B ) ) + ( -u N x. ( ( -u 1 S A ) P B ) ) ) = ( ( -u N x. ( A P B ) ) + -u ( N x. ( ( -u 1 S A ) P B ) ) ) ) |
| 50 | 8 | adantr | |- ( ( N e. NN0 /\ A e. X ) -> -u N e. CC ) |
| 51 | 11 | adantl | |- ( ( N e. NN0 /\ A e. X ) -> ( A P B ) e. CC ) |
| 52 | 43 | adantl | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u 1 S A ) P B ) e. CC ) |
| 53 | 50 51 52 | adddid | |- ( ( N e. NN0 /\ A e. X ) -> ( -u N x. ( ( A P B ) + ( ( -u 1 S A ) P B ) ) ) = ( ( -u N x. ( A P B ) ) + ( -u N x. ( ( -u 1 S A ) P B ) ) ) ) |
| 54 | 1 2 3 4 5 | ipdiri | |- ( ( A e. X /\ ( -u 1 S A ) e. X /\ B e. X ) -> ( ( A G ( -u 1 S A ) ) P B ) = ( ( A P B ) + ( ( -u 1 S A ) P B ) ) ) |
| 55 | 6 54 | mp3an3 | |- ( ( A e. X /\ ( -u 1 S A ) e. X ) -> ( ( A G ( -u 1 S A ) ) P B ) = ( ( A P B ) + ( ( -u 1 S A ) P B ) ) ) |
| 56 | 36 55 | mpdan | |- ( A e. X -> ( ( A G ( -u 1 S A ) ) P B ) = ( ( A P B ) + ( ( -u 1 S A ) P B ) ) ) |
| 57 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 58 | 1 2 3 57 | nvrinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( 0vec ` U ) ) |
| 59 | 9 58 | mpan | |- ( A e. X -> ( A G ( -u 1 S A ) ) = ( 0vec ` U ) ) |
| 60 | 59 | oveq1d | |- ( A e. X -> ( ( A G ( -u 1 S A ) ) P B ) = ( ( 0vec ` U ) P B ) ) |
| 61 | 1 57 4 | dip0l | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) P B ) = 0 ) |
| 62 | 9 6 61 | mp2an | |- ( ( 0vec ` U ) P B ) = 0 |
| 63 | 60 62 | eqtrdi | |- ( A e. X -> ( ( A G ( -u 1 S A ) ) P B ) = 0 ) |
| 64 | 56 63 | eqtr3d | |- ( A e. X -> ( ( A P B ) + ( ( -u 1 S A ) P B ) ) = 0 ) |
| 65 | 64 | oveq2d | |- ( A e. X -> ( -u N x. ( ( A P B ) + ( ( -u 1 S A ) P B ) ) ) = ( -u N x. 0 ) ) |
| 66 | 8 | mul01d | |- ( N e. NN0 -> ( -u N x. 0 ) = 0 ) |
| 67 | 65 66 | sylan9eqr | |- ( ( N e. NN0 /\ A e. X ) -> ( -u N x. ( ( A P B ) + ( ( -u 1 S A ) P B ) ) ) = 0 ) |
| 68 | 53 67 | eqtr3d | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N x. ( A P B ) ) + ( -u N x. ( ( -u 1 S A ) P B ) ) ) = 0 ) |
| 69 | 49 68 | eqtr3d | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N x. ( A P B ) ) + -u ( N x. ( ( -u 1 S A ) P B ) ) ) = 0 ) |
| 70 | 40 46 69 | 3eqtr2d | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N x. ( A P B ) ) - ( ( -u N S A ) P B ) ) = 0 ) |
| 71 | 13 19 70 | subeq0d | |- ( ( N e. NN0 /\ A e. X ) -> ( -u N x. ( A P B ) ) = ( ( -u N S A ) P B ) ) |
| 72 | 71 | eqcomd | |- ( ( N e. NN0 /\ A e. X ) -> ( ( -u N S A ) P B ) = ( -u N x. ( A P B ) ) ) |