This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | ipasslem2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | |
| 7 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 8 | 7 | negcld | ⊢ ( 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℂ ) |
| 9 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 10 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 11 | 9 6 10 | mp3an13 | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 12 | mulcl | ⊢ ( ( - 𝑁 ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℂ ) | |
| 13 | 8 11 12 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ∈ ℂ ) |
| 14 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 𝑁 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 𝑆 𝐴 ) ∈ 𝑋 ) |
| 15 | 9 14 | mp3an1 | ⊢ ( ( - 𝑁 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 𝑆 𝐴 ) ∈ 𝑋 ) |
| 16 | 8 15 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 𝑆 𝐴 ) ∈ 𝑋 ) |
| 17 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 𝑁 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 18 | 9 6 17 | mp3an13 | ⊢ ( ( - 𝑁 𝑆 𝐴 ) ∈ 𝑋 → ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 20 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 21 | mulneg2 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑁 · - 1 ) = - ( 𝑁 · 1 ) ) | |
| 22 | 20 21 | mpan2 | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 · - 1 ) = - ( 𝑁 · 1 ) ) |
| 23 | mulrid | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 · 1 ) = 𝑁 ) | |
| 24 | 23 | negeqd | ⊢ ( 𝑁 ∈ ℂ → - ( 𝑁 · 1 ) = - 𝑁 ) |
| 25 | 22 24 | eqtr2d | ⊢ ( 𝑁 ∈ ℂ → - 𝑁 = ( 𝑁 · - 1 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → - 𝑁 = ( 𝑁 · - 1 ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 𝑆 𝐴 ) = ( ( 𝑁 · - 1 ) 𝑆 𝐴 ) ) |
| 28 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 29 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑁 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑁 · - 1 ) 𝑆 𝐴 ) = ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) ) |
| 30 | 9 29 | mpan | ⊢ ( ( 𝑁 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 · - 1 ) 𝑆 𝐴 ) = ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) ) |
| 31 | 28 30 | mp3an2 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 · - 1 ) 𝑆 𝐴 ) = ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) ) |
| 32 | 27 31 | eqtrd | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 𝑆 𝐴 ) = ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) ) |
| 33 | 7 32 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 𝑆 𝐴 ) = ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) |
| 35 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 36 | 9 28 35 | mp3an12 | ⊢ ( 𝐴 ∈ 𝑋 → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 37 | 1 2 3 4 5 6 | ipasslem1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 38 | 36 37 | sylan2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 39 | 34 38 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) − ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) = ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) − ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) ) |
| 41 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 42 | 9 6 41 | mp3an13 | ⊢ ( ( - 1 𝑆 𝐴 ) ∈ 𝑋 → ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 43 | 36 42 | syl | ⊢ ( 𝐴 ∈ 𝑋 → ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 44 | mulcl | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) → ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ∈ ℂ ) | |
| 45 | 7 43 44 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ∈ ℂ ) |
| 46 | 13 45 | negsubd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) + - ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) = ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) − ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) ) |
| 47 | mulneg1 | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) → ( - 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) = - ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) | |
| 48 | 7 43 47 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) = - ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 49 | 48 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) + ( - 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) = ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) + - ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) ) |
| 50 | 8 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → - 𝑁 ∈ ℂ ) |
| 51 | 11 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 52 | 43 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
| 53 | 50 51 52 | adddid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 · ( ( 𝐴 𝑃 𝐵 ) + ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) = ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) + ( - 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) ) |
| 54 | 1 2 3 4 5 | ipdiri | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( 𝐴 𝑃 𝐵 ) + ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 55 | 6 54 | mp3an3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( 𝐴 𝑃 𝐵 ) + ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 56 | 36 55 | mpdan | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( 𝐴 𝑃 𝐵 ) + ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 57 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 58 | 1 2 3 57 | nvrinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 59 | 9 58 | mpan | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 60 | 59 | oveq1d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) ) |
| 61 | 1 57 4 | dip0l | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 ) |
| 62 | 9 6 61 | mp2an | ⊢ ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 |
| 63 | 60 62 | eqtrdi | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = 0 ) |
| 64 | 56 63 | eqtr3d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐴 𝑃 𝐵 ) + ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) = 0 ) |
| 65 | 64 | oveq2d | ⊢ ( 𝐴 ∈ 𝑋 → ( - 𝑁 · ( ( 𝐴 𝑃 𝐵 ) + ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) = ( - 𝑁 · 0 ) ) |
| 66 | 8 | mul01d | ⊢ ( 𝑁 ∈ ℕ0 → ( - 𝑁 · 0 ) = 0 ) |
| 67 | 65 66 | sylan9eqr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 · ( ( 𝐴 𝑃 𝐵 ) + ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) = 0 ) |
| 68 | 53 67 | eqtr3d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) + ( - 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) = 0 ) |
| 69 | 49 68 | eqtr3d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) + - ( 𝑁 · ( ( - 1 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) = 0 ) |
| 70 | 40 46 69 | 3eqtr2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) − ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) = 0 ) |
| 71 | 13 19 70 | subeq0d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) = ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 72 | 71 | eqcomd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |