This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem1.b | |- B e. X |
||
| Assertion | ipasslem3 | |- ( ( N e. ZZ /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem1.b | |- B e. X |
|
| 7 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 8 | 1 2 3 4 5 6 | ipasslem1 | |- ( ( N e. NN0 /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| 9 | nnnn0 | |- ( -u N e. NN -> -u N e. NN0 ) |
|
| 10 | 1 2 3 4 5 6 | ipasslem2 | |- ( ( -u N e. NN0 /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
| 11 | 9 10 | sylan | |- ( ( -u N e. NN /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
| 12 | 11 | adantll | |- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( -u -u N x. ( A P B ) ) ) |
| 13 | recn | |- ( N e. RR -> N e. CC ) |
|
| 14 | 13 | negnegd | |- ( N e. RR -> -u -u N = N ) |
| 15 | 14 | oveq1d | |- ( N e. RR -> ( -u -u N S A ) = ( N S A ) ) |
| 16 | 15 | oveq1d | |- ( N e. RR -> ( ( -u -u N S A ) P B ) = ( ( N S A ) P B ) ) |
| 17 | 16 | ad2antrr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( -u -u N S A ) P B ) = ( ( N S A ) P B ) ) |
| 18 | 14 | oveq1d | |- ( N e. RR -> ( -u -u N x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
| 19 | 18 | ad2antrr | |- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( -u -u N x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
| 20 | 12 17 19 | 3eqtr3d | |- ( ( ( N e. RR /\ -u N e. NN ) /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| 21 | 8 20 | jaoian | |- ( ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| 22 | 7 21 | sylanb | |- ( ( N e. ZZ /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |