This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dip0r.1 | |- X = ( BaseSet ` U ) |
|
| dip0r.5 | |- Z = ( 0vec ` U ) |
||
| dip0r.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dip0l | |- ( ( U e. NrmCVec /\ A e. X ) -> ( Z P A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dip0r.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dip0r.5 | |- Z = ( 0vec ` U ) |
|
| 3 | dip0r.7 | |- P = ( .iOLD ` U ) |
|
| 4 | 1 2 | nvzcl | |- ( U e. NrmCVec -> Z e. X ) |
| 5 | 4 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> Z e. X ) |
| 6 | 1 3 | dipcj | |- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( * ` ( A P Z ) ) = ( Z P A ) ) |
| 7 | 5 6 | mpd3an3 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( * ` ( A P Z ) ) = ( Z P A ) ) |
| 8 | 1 2 3 | dip0r | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P Z ) = 0 ) |
| 9 | 8 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( * ` ( A P Z ) ) = ( * ` 0 ) ) |
| 10 | cj0 | |- ( * ` 0 ) = 0 |
|
| 11 | 9 10 | eqtrdi | |- ( ( U e. NrmCVec /\ A e. X ) -> ( * ` ( A P Z ) ) = 0 ) |
| 12 | 7 11 | eqtr3d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( Z P A ) = 0 ) |