This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvscl.1 | |- X = ( BaseSet ` U ) |
|
| nvscl.4 | |- S = ( .sOLD ` U ) |
||
| Assertion | nvsass | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvscl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvscl.4 | |- S = ( .sOLD ` U ) |
|
| 3 | eqid | |- ( 1st ` U ) = ( 1st ` U ) |
|
| 4 | 3 | nvvc | |- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
| 5 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 6 | 5 | vafval | |- ( +v ` U ) = ( 1st ` ( 1st ` U ) ) |
| 7 | 2 | smfval | |- S = ( 2nd ` ( 1st ` U ) ) |
| 8 | 1 5 | bafval | |- X = ran ( +v ` U ) |
| 9 | 6 7 8 | vcass | |- ( ( ( 1st ` U ) e. CVecOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |
| 10 | 4 9 | sylan | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A x. B ) S C ) = ( A S ( B S C ) ) ) |