This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| Assertion | ipassi | |- ( ( A e. CC /\ B e. X /\ C e. X ) -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | oveq2 | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( A S B ) = ( A S if ( B e. X , B , ( 0vec ` U ) ) ) ) |
|
| 7 | 6 | oveq1d | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( ( A S B ) P C ) = ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P C ) ) |
| 8 | oveq1 | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( B P C ) = ( if ( B e. X , B , ( 0vec ` U ) ) P C ) ) |
|
| 9 | 8 | oveq2d | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( A x. ( B P C ) ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P C ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( ( ( A S B ) P C ) = ( A x. ( B P C ) ) <-> ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P C ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P C ) ) ) ) |
| 11 | 10 | imbi2d | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( ( A e. CC -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) <-> ( A e. CC -> ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P C ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P C ) ) ) ) ) |
| 12 | oveq2 | |- ( C = if ( C e. X , C , ( 0vec ` U ) ) -> ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P C ) = ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) ) |
|
| 13 | oveq2 | |- ( C = if ( C e. X , C , ( 0vec ` U ) ) -> ( if ( B e. X , B , ( 0vec ` U ) ) P C ) = ( if ( B e. X , B , ( 0vec ` U ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) ) |
|
| 14 | 13 | oveq2d | |- ( C = if ( C e. X , C , ( 0vec ` U ) ) -> ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P C ) ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( C = if ( C e. X , C , ( 0vec ` U ) ) -> ( ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P C ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P C ) ) <-> ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) ) ) ) |
| 16 | 15 | imbi2d | |- ( C = if ( C e. X , C , ( 0vec ` U ) ) -> ( ( A e. CC -> ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P C ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P C ) ) ) <-> ( A e. CC -> ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) ) ) ) ) |
| 17 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 18 | 1 17 5 | elimph | |- if ( B e. X , B , ( 0vec ` U ) ) e. X |
| 19 | 1 17 5 | elimph | |- if ( C e. X , C , ( 0vec ` U ) ) e. X |
| 20 | 1 2 3 4 5 18 19 | ipasslem11 | |- ( A e. CC -> ( ( A S if ( B e. X , B , ( 0vec ` U ) ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) = ( A x. ( if ( B e. X , B , ( 0vec ` U ) ) P if ( C e. X , C , ( 0vec ` U ) ) ) ) ) |
| 21 | 11 16 20 | dedth2h | |- ( ( B e. X /\ C e. X ) -> ( A e. CC -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) ) |
| 22 | 21 | com12 | |- ( A e. CC -> ( ( B e. X /\ C e. X ) -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) ) |
| 23 | 22 | 3impib | |- ( ( A e. CC /\ B e. X /\ C e. X ) -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) |