This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector minus itself. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvrinv.1 | |- X = ( BaseSet ` U ) |
|
| nvrinv.2 | |- G = ( +v ` U ) |
||
| nvrinv.4 | |- S = ( .sOLD ` U ) |
||
| nvrinv.6 | |- Z = ( 0vec ` U ) |
||
| Assertion | nvrinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrinv.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvrinv.2 | |- G = ( +v ` U ) |
|
| 3 | nvrinv.4 | |- S = ( .sOLD ` U ) |
|
| 4 | nvrinv.6 | |- Z = ( 0vec ` U ) |
|
| 5 | 2 | nvgrp | |- ( U e. NrmCVec -> G e. GrpOp ) |
| 6 | 1 2 | bafval | |- X = ran G |
| 7 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 8 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 9 | 6 7 8 | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( ( inv ` G ) ` A ) ) = ( GId ` G ) ) |
| 10 | 5 9 | sylan | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( ( inv ` G ) ` A ) ) = ( GId ` G ) ) |
| 11 | 1 2 3 8 | nvinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) = ( ( inv ` G ) ` A ) ) |
| 12 | 11 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( A G ( ( inv ` G ) ` A ) ) ) |
| 13 | 2 4 | 0vfval | |- ( U e. NrmCVec -> Z = ( GId ` G ) ) |
| 14 | 13 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> Z = ( GId ` G ) ) |
| 15 | 10 12 14 | 3eqtr4d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = Z ) |