This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| ipcl.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipcl.7 | |- P = ( .iOLD ` U ) |
|
| 3 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 4 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 5 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 6 | 1 3 4 5 2 | ipval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) ) |
| 7 | fzfid | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 ... 4 ) e. Fin ) |
|
| 8 | ax-icn | |- _i e. CC |
|
| 9 | elfznn | |- ( k e. ( 1 ... 4 ) -> k e. NN ) |
|
| 10 | 9 | nnnn0d | |- ( k e. ( 1 ... 4 ) -> k e. NN0 ) |
| 11 | expcl | |- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
|
| 12 | 8 10 11 | sylancr | |- ( k e. ( 1 ... 4 ) -> ( _i ^ k ) e. CC ) |
| 13 | 12 | adantl | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( _i ^ k ) e. CC ) |
| 14 | 1 3 4 5 2 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ ( _i ^ k ) e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 15 | 12 14 | sylan2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 16 | 13 15 | mulcld | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) |
| 17 | 7 16 | fsumcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) |
| 18 | 4cn | |- 4 e. CC |
|
| 19 | 4ne0 | |- 4 =/= 0 |
|
| 20 | divcl | |- ( ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC /\ 4 e. CC /\ 4 =/= 0 ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
|
| 21 | 18 19 20 | mp3an23 | |- ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
| 22 | 17 21 | syl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
| 23 | 6 22 | eqeltrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |