This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem1.b | |- B e. X |
||
| Assertion | ipasslem1 | |- ( ( N e. NN0 /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem1.b | |- B e. X |
|
| 7 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | 5 | phnvi | |- U e. NrmCVec |
| 10 | 1 2 3 | nvdir | |- ( ( U e. NrmCVec /\ ( k e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
| 11 | 9 10 | mpan | |- ( ( k e. CC /\ 1 e. CC /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
| 12 | 8 11 | mp3an2 | |- ( ( k e. CC /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
| 13 | 7 12 | sylan | |- ( ( k e. NN0 /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G ( 1 S A ) ) ) |
| 14 | 1 3 | nvsid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
| 15 | 9 14 | mpan | |- ( A e. X -> ( 1 S A ) = A ) |
| 16 | 15 | adantl | |- ( ( k e. NN0 /\ A e. X ) -> ( 1 S A ) = A ) |
| 17 | 16 | oveq2d | |- ( ( k e. NN0 /\ A e. X ) -> ( ( k S A ) G ( 1 S A ) ) = ( ( k S A ) G A ) ) |
| 18 | 13 17 | eqtrd | |- ( ( k e. NN0 /\ A e. X ) -> ( ( k + 1 ) S A ) = ( ( k S A ) G A ) ) |
| 19 | 18 | oveq1d | |- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( ( k S A ) G A ) P B ) ) |
| 20 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 21 | 9 6 20 | mp3an13 | |- ( A e. X -> ( A P B ) e. CC ) |
| 22 | 21 | mullidd | |- ( A e. X -> ( 1 x. ( A P B ) ) = ( A P B ) ) |
| 23 | 22 | adantl | |- ( ( k e. NN0 /\ A e. X ) -> ( 1 x. ( A P B ) ) = ( A P B ) ) |
| 24 | 23 | oveq2d | |- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
| 25 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ k e. CC /\ A e. X ) -> ( k S A ) e. X ) |
| 26 | 9 25 | mp3an1 | |- ( ( k e. CC /\ A e. X ) -> ( k S A ) e. X ) |
| 27 | 7 26 | sylan | |- ( ( k e. NN0 /\ A e. X ) -> ( k S A ) e. X ) |
| 28 | 1 2 3 4 5 | ipdiri | |- ( ( ( k S A ) e. X /\ A e. X /\ B e. X ) -> ( ( ( k S A ) G A ) P B ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
| 29 | 6 28 | mp3an3 | |- ( ( ( k S A ) e. X /\ A e. X ) -> ( ( ( k S A ) G A ) P B ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
| 30 | 27 29 | sylancom | |- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k S A ) G A ) P B ) = ( ( ( k S A ) P B ) + ( A P B ) ) ) |
| 31 | 24 30 | eqtr4d | |- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) = ( ( ( k S A ) G A ) P B ) ) |
| 32 | 19 31 | eqtr4d | |- ( ( k e. NN0 /\ A e. X ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) ) |
| 33 | oveq1 | |- ( ( ( k S A ) P B ) = ( k x. ( A P B ) ) -> ( ( ( k S A ) P B ) + ( 1 x. ( A P B ) ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
|
| 34 | 32 33 | sylan9eq | |- ( ( ( k e. NN0 /\ A e. X ) /\ ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
| 35 | adddir | |- ( ( k e. CC /\ 1 e. CC /\ ( A P B ) e. CC ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
|
| 36 | 8 35 | mp3an2 | |- ( ( k e. CC /\ ( A P B ) e. CC ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
| 37 | 7 21 36 | syl2an | |- ( ( k e. NN0 /\ A e. X ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
| 38 | 37 | adantr | |- ( ( ( k e. NN0 /\ A e. X ) /\ ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( ( k + 1 ) x. ( A P B ) ) = ( ( k x. ( A P B ) ) + ( 1 x. ( A P B ) ) ) ) |
| 39 | 34 38 | eqtr4d | |- ( ( ( k e. NN0 /\ A e. X ) /\ ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) |
| 40 | 39 | exp31 | |- ( k e. NN0 -> ( A e. X -> ( ( ( k S A ) P B ) = ( k x. ( A P B ) ) -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) ) |
| 41 | 40 | a2d | |- ( k e. NN0 -> ( ( A e. X -> ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) -> ( A e. X -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) ) |
| 42 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 43 | 1 42 4 | dip0l | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) P B ) = 0 ) |
| 44 | 9 6 43 | mp2an | |- ( ( 0vec ` U ) P B ) = 0 |
| 45 | 1 3 42 | nv0 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 0 S A ) = ( 0vec ` U ) ) |
| 46 | 9 45 | mpan | |- ( A e. X -> ( 0 S A ) = ( 0vec ` U ) ) |
| 47 | 46 | oveq1d | |- ( A e. X -> ( ( 0 S A ) P B ) = ( ( 0vec ` U ) P B ) ) |
| 48 | 21 | mul02d | |- ( A e. X -> ( 0 x. ( A P B ) ) = 0 ) |
| 49 | 44 47 48 | 3eqtr4a | |- ( A e. X -> ( ( 0 S A ) P B ) = ( 0 x. ( A P B ) ) ) |
| 50 | oveq1 | |- ( j = 0 -> ( j S A ) = ( 0 S A ) ) |
|
| 51 | 50 | oveq1d | |- ( j = 0 -> ( ( j S A ) P B ) = ( ( 0 S A ) P B ) ) |
| 52 | oveq1 | |- ( j = 0 -> ( j x. ( A P B ) ) = ( 0 x. ( A P B ) ) ) |
|
| 53 | 51 52 | eqeq12d | |- ( j = 0 -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( 0 S A ) P B ) = ( 0 x. ( A P B ) ) ) ) |
| 54 | 53 | imbi2d | |- ( j = 0 -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( 0 S A ) P B ) = ( 0 x. ( A P B ) ) ) ) ) |
| 55 | oveq1 | |- ( j = k -> ( j S A ) = ( k S A ) ) |
|
| 56 | 55 | oveq1d | |- ( j = k -> ( ( j S A ) P B ) = ( ( k S A ) P B ) ) |
| 57 | oveq1 | |- ( j = k -> ( j x. ( A P B ) ) = ( k x. ( A P B ) ) ) |
|
| 58 | 56 57 | eqeq12d | |- ( j = k -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) ) |
| 59 | 58 | imbi2d | |- ( j = k -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( k S A ) P B ) = ( k x. ( A P B ) ) ) ) ) |
| 60 | oveq1 | |- ( j = ( k + 1 ) -> ( j S A ) = ( ( k + 1 ) S A ) ) |
|
| 61 | 60 | oveq1d | |- ( j = ( k + 1 ) -> ( ( j S A ) P B ) = ( ( ( k + 1 ) S A ) P B ) ) |
| 62 | oveq1 | |- ( j = ( k + 1 ) -> ( j x. ( A P B ) ) = ( ( k + 1 ) x. ( A P B ) ) ) |
|
| 63 | 61 62 | eqeq12d | |- ( j = ( k + 1 ) -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) |
| 64 | 63 | imbi2d | |- ( j = ( k + 1 ) -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( ( k + 1 ) S A ) P B ) = ( ( k + 1 ) x. ( A P B ) ) ) ) ) |
| 65 | oveq1 | |- ( j = N -> ( j S A ) = ( N S A ) ) |
|
| 66 | 65 | oveq1d | |- ( j = N -> ( ( j S A ) P B ) = ( ( N S A ) P B ) ) |
| 67 | oveq1 | |- ( j = N -> ( j x. ( A P B ) ) = ( N x. ( A P B ) ) ) |
|
| 68 | 66 67 | eqeq12d | |- ( j = N -> ( ( ( j S A ) P B ) = ( j x. ( A P B ) ) <-> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) ) |
| 69 | 68 | imbi2d | |- ( j = N -> ( ( A e. X -> ( ( j S A ) P B ) = ( j x. ( A P B ) ) ) <-> ( A e. X -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) ) ) |
| 70 | 41 49 54 59 64 69 | nn0indALT | |- ( N e. NN0 -> ( A e. X -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) ) |
| 71 | 70 | imp | |- ( ( N e. NN0 /\ A e. X ) -> ( ( N S A ) P B ) = ( N x. ( A P B ) ) ) |