This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1f0 | |- ( RR X. { 0 } ) e. dom S.1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | 1 | fconst6 | |- ( RR X. { 0 } ) : RR --> RR |
| 3 | 2 | a1i | |- ( T. -> ( RR X. { 0 } ) : RR --> RR ) |
| 4 | snfi | |- { 0 } e. Fin |
|
| 5 | rnxpss | |- ran ( RR X. { 0 } ) C_ { 0 } |
|
| 6 | ssfi | |- ( ( { 0 } e. Fin /\ ran ( RR X. { 0 } ) C_ { 0 } ) -> ran ( RR X. { 0 } ) e. Fin ) |
|
| 7 | 4 5 6 | mp2an | |- ran ( RR X. { 0 } ) e. Fin |
| 8 | 7 | a1i | |- ( T. -> ran ( RR X. { 0 } ) e. Fin ) |
| 9 | difss | |- ( ran ( RR X. { 0 } ) \ { 0 } ) C_ ran ( RR X. { 0 } ) |
|
| 10 | 9 5 | sstri | |- ( ran ( RR X. { 0 } ) \ { 0 } ) C_ { 0 } |
| 11 | 10 | sseli | |- ( x e. ( ran ( RR X. { 0 } ) \ { 0 } ) -> x e. { 0 } ) |
| 12 | 11 | adantl | |- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> x e. { 0 } ) |
| 13 | eldifn | |- ( x e. ( ran ( RR X. { 0 } ) \ { 0 } ) -> -. x e. { 0 } ) |
|
| 14 | 13 | adantl | |- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> -. x e. { 0 } ) |
| 15 | 12 14 | pm2.21dd | |- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> ( `' ( RR X. { 0 } ) " { x } ) e. dom vol ) |
| 16 | 12 14 | pm2.21dd | |- ( ( T. /\ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ) -> ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) e. RR ) |
| 17 | 3 8 15 16 | i1fd | |- ( T. -> ( RR X. { 0 } ) e. dom S.1 ) |
| 18 | 17 | mptru | |- ( RR X. { 0 } ) e. dom S.1 |