This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
| Assertion | i1fmullem | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( `' ( F oF x. G ) " { A } ) = U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
| 3 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 4 | 1 3 | syl | |- ( ph -> F : RR --> RR ) |
| 5 | 4 | ffnd | |- ( ph -> F Fn RR ) |
| 6 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 7 | 2 6 | syl | |- ( ph -> G : RR --> RR ) |
| 8 | 7 | ffnd | |- ( ph -> G Fn RR ) |
| 9 | reex | |- RR e. _V |
|
| 10 | 9 | a1i | |- ( ph -> RR e. _V ) |
| 11 | inidm | |- ( RR i^i RR ) = RR |
|
| 12 | 5 8 10 10 11 | offn | |- ( ph -> ( F oF x. G ) Fn RR ) |
| 13 | 12 | adantr | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( F oF x. G ) Fn RR ) |
| 14 | fniniseg | |- ( ( F oF x. G ) Fn RR -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) ) ) |
| 16 | 5 | adantr | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> F Fn RR ) |
| 17 | 8 | adantr | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> G Fn RR ) |
| 18 | 9 | a1i | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> RR e. _V ) |
| 19 | eqidd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
|
| 20 | eqidd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( G ` z ) = ( G ` z ) ) |
|
| 21 | 16 17 18 18 11 19 20 | ofval | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( ( F oF x. G ) ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 22 | 21 | eqeq1d | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ z e. RR ) -> ( ( ( F oF x. G ) ` z ) = A <-> ( ( F ` z ) x. ( G ` z ) ) = A ) ) |
| 23 | 22 | pm5.32da | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F oF x. G ) ` z ) = A ) <-> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
| 24 | 8 | ad2antrr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> G Fn RR ) |
| 25 | simprl | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. RR ) |
|
| 26 | fnfvelrn | |- ( ( G Fn RR /\ z e. RR ) -> ( G ` z ) e. ran G ) |
|
| 27 | 24 25 26 | syl2anc | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. ran G ) |
| 28 | eldifsni | |- ( A e. ( CC \ { 0 } ) -> A =/= 0 ) |
|
| 29 | 28 | ad2antlr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> A =/= 0 ) |
| 30 | simprr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) |
|
| 31 | 4 | ad2antrr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> F : RR --> RR ) |
| 32 | 31 25 | ffvelcdmd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) e. RR ) |
| 33 | 32 | recnd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) e. CC ) |
| 34 | 33 | mul01d | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. 0 ) = 0 ) |
| 35 | 29 30 34 | 3netr4d | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( F ` z ) x. ( G ` z ) ) =/= ( ( F ` z ) x. 0 ) ) |
| 36 | oveq2 | |- ( ( G ` z ) = 0 -> ( ( F ` z ) x. ( G ` z ) ) = ( ( F ` z ) x. 0 ) ) |
|
| 37 | 36 | necon3i | |- ( ( ( F ` z ) x. ( G ` z ) ) =/= ( ( F ` z ) x. 0 ) -> ( G ` z ) =/= 0 ) |
| 38 | 35 37 | syl | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) =/= 0 ) |
| 39 | eldifsn | |- ( ( G ` z ) e. ( ran G \ { 0 } ) <-> ( ( G ` z ) e. ran G /\ ( G ` z ) =/= 0 ) ) |
|
| 40 | 27 38 39 | sylanbrc | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. ( ran G \ { 0 } ) ) |
| 41 | 7 | ad2antrr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> G : RR --> RR ) |
| 42 | 41 25 | ffvelcdmd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. RR ) |
| 43 | 42 | recnd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) e. CC ) |
| 44 | 33 43 38 | divcan4d | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( ( F ` z ) x. ( G ` z ) ) / ( G ` z ) ) = ( F ` z ) ) |
| 45 | 30 | oveq1d | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( ( ( F ` z ) x. ( G ` z ) ) / ( G ` z ) ) = ( A / ( G ` z ) ) ) |
| 46 | 44 45 | eqtr3d | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( F ` z ) = ( A / ( G ` z ) ) ) |
| 47 | 31 | ffnd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> F Fn RR ) |
| 48 | fniniseg | |- ( F Fn RR -> ( z e. ( `' F " { ( A / ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / ( G ` z ) ) ) ) ) |
|
| 49 | 47 48 | syl | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( z e. ( `' F " { ( A / ( G ` z ) ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / ( G ` z ) ) ) ) ) |
| 50 | 25 46 49 | mpbir2and | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( `' F " { ( A / ( G ` z ) ) } ) ) |
| 51 | eqidd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( G ` z ) = ( G ` z ) ) |
|
| 52 | fniniseg | |- ( G Fn RR -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
|
| 53 | 24 52 | syl | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> ( z e. ( `' G " { ( G ` z ) } ) <-> ( z e. RR /\ ( G ` z ) = ( G ` z ) ) ) ) |
| 54 | 25 51 53 | mpbir2and | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( `' G " { ( G ` z ) } ) ) |
| 55 | 50 54 | elind | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
| 56 | oveq2 | |- ( y = ( G ` z ) -> ( A / y ) = ( A / ( G ` z ) ) ) |
|
| 57 | 56 | sneqd | |- ( y = ( G ` z ) -> { ( A / y ) } = { ( A / ( G ` z ) ) } ) |
| 58 | 57 | imaeq2d | |- ( y = ( G ` z ) -> ( `' F " { ( A / y ) } ) = ( `' F " { ( A / ( G ` z ) ) } ) ) |
| 59 | sneq | |- ( y = ( G ` z ) -> { y } = { ( G ` z ) } ) |
|
| 60 | 59 | imaeq2d | |- ( y = ( G ` z ) -> ( `' G " { y } ) = ( `' G " { ( G ` z ) } ) ) |
| 61 | 58 60 | ineq12d | |- ( y = ( G ` z ) -> ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) = ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) |
| 62 | 61 | eleq2d | |- ( y = ( G ` z ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) ) |
| 63 | 62 | rspcev | |- ( ( ( G ` z ) e. ( ran G \ { 0 } ) /\ z e. ( ( `' F " { ( A / ( G ` z ) ) } ) i^i ( `' G " { ( G ` z ) } ) ) ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |
| 64 | 40 55 63 | syl2anc | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |
| 65 | 64 | ex | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) -> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 66 | fniniseg | |- ( F Fn RR -> ( z e. ( `' F " { ( A / y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / y ) ) ) ) |
|
| 67 | 16 66 | syl | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' F " { ( A / y ) } ) <-> ( z e. RR /\ ( F ` z ) = ( A / y ) ) ) ) |
| 68 | fniniseg | |- ( G Fn RR -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
|
| 69 | 17 68 | syl | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
| 70 | 67 69 | anbi12d | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. ( `' F " { ( A / y ) } ) /\ z e. ( `' G " { y } ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A / y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) ) |
| 71 | elin | |- ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. ( `' F " { ( A / y ) } ) /\ z e. ( `' G " { y } ) ) ) |
|
| 72 | anandi | |- ( ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) <-> ( ( z e. RR /\ ( F ` z ) = ( A / y ) ) /\ ( z e. RR /\ ( G ` z ) = y ) ) ) |
|
| 73 | 70 71 72 | 3bitr4g | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) ) ) |
| 74 | 73 | adantr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) ) ) |
| 75 | eldifi | |- ( A e. ( CC \ { 0 } ) -> A e. CC ) |
|
| 76 | 75 | ad2antlr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> A e. CC ) |
| 77 | 7 | ad2antrr | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> G : RR --> RR ) |
| 78 | 77 | frnd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ran G C_ RR ) |
| 79 | simprl | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. ( ran G \ { 0 } ) ) |
|
| 80 | eldifsn | |- ( y e. ( ran G \ { 0 } ) <-> ( y e. ran G /\ y =/= 0 ) ) |
|
| 81 | 79 80 | sylib | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( y e. ran G /\ y =/= 0 ) ) |
| 82 | 81 | simpld | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. ran G ) |
| 83 | 78 82 | sseldd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. RR ) |
| 84 | 83 | recnd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y e. CC ) |
| 85 | 81 | simprd | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> y =/= 0 ) |
| 86 | 76 84 85 | divcan1d | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( ( A / y ) x. y ) = A ) |
| 87 | oveq12 | |- ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = ( ( A / y ) x. y ) ) |
|
| 88 | 87 | eqeq1d | |- ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( ( F ` z ) x. ( G ` z ) ) = A <-> ( ( A / y ) x. y ) = A ) ) |
| 89 | 86 88 | syl5ibrcom | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ ( y e. ( ran G \ { 0 } ) /\ z e. RR ) ) -> ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) ) |
| 90 | 89 | anassrs | |- ( ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) -> ( ( F ` z ) x. ( G ` z ) ) = A ) ) |
| 91 | 90 | imdistanda | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) = ( A / y ) /\ ( G ` z ) = y ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
| 92 | 74 91 | sylbid | |- ( ( ( ph /\ A e. ( CC \ { 0 } ) ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
| 93 | 92 | rexlimdva | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) -> ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) ) ) |
| 94 | 65 93 | impbid | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( ( z e. RR /\ ( ( F ` z ) x. ( G ` z ) ) = A ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 95 | 15 23 94 | 3bitrd | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 96 | eliun | |- ( z e. U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) <-> E. y e. ( ran G \ { 0 } ) z e. ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |
|
| 97 | 95 96 | bitr4di | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( z e. ( `' ( F oF x. G ) " { A } ) <-> z e. U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) ) |
| 98 | 97 | eqrdv | |- ( ( ph /\ A e. ( CC \ { 0 } ) ) -> ( `' ( F oF x. G ) " { A } ) = U_ y e. ( ran G \ { 0 } ) ( ( `' F " { ( A / y ) } ) i^i ( `' G " { y } ) ) ) |