This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcddiv | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ ( C || A /\ C || B ) ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> C e. ZZ ) |
| 3 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> A e. ZZ ) |
|
| 4 | divides | |- ( ( C e. ZZ /\ A e. ZZ ) -> ( C || A <-> E. a e. ZZ ( a x. C ) = A ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( C || A <-> E. a e. ZZ ( a x. C ) = A ) ) |
| 6 | simp2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> B e. ZZ ) |
|
| 7 | divides | |- ( ( C e. ZZ /\ B e. ZZ ) -> ( C || B <-> E. b e. ZZ ( b x. C ) = B ) ) |
|
| 8 | 2 6 7 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( C || B <-> E. b e. ZZ ( b x. C ) = B ) ) |
| 9 | 5 8 | anbi12d | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( ( C || A /\ C || B ) <-> ( E. a e. ZZ ( a x. C ) = A /\ E. b e. ZZ ( b x. C ) = B ) ) ) |
| 10 | reeanv | |- ( E. a e. ZZ E. b e. ZZ ( ( a x. C ) = A /\ ( b x. C ) = B ) <-> ( E. a e. ZZ ( a x. C ) = A /\ E. b e. ZZ ( b x. C ) = B ) ) |
|
| 11 | 9 10 | bitr4di | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( ( C || A /\ C || B ) <-> E. a e. ZZ E. b e. ZZ ( ( a x. C ) = A /\ ( b x. C ) = B ) ) ) |
| 12 | gcdcl | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( a gcd b ) e. NN0 ) |
|
| 13 | 12 | nn0cnd | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( a gcd b ) e. CC ) |
| 14 | 13 | 3adant3 | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( a gcd b ) e. CC ) |
| 15 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 16 | 15 | 3ad2ant3 | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> C e. CC ) |
| 17 | nnne0 | |- ( C e. NN -> C =/= 0 ) |
|
| 18 | 17 | 3ad2ant3 | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> C =/= 0 ) |
| 19 | 14 16 18 | divcan4d | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( ( a gcd b ) x. C ) / C ) = ( a gcd b ) ) |
| 20 | nnnn0 | |- ( C e. NN -> C e. NN0 ) |
|
| 21 | mulgcdr | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN0 ) -> ( ( a x. C ) gcd ( b x. C ) ) = ( ( a gcd b ) x. C ) ) |
|
| 22 | 20 21 | syl3an3 | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( a x. C ) gcd ( b x. C ) ) = ( ( a gcd b ) x. C ) ) |
| 23 | 22 | oveq1d | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( ( a x. C ) gcd ( b x. C ) ) / C ) = ( ( ( a gcd b ) x. C ) / C ) ) |
| 24 | zcn | |- ( a e. ZZ -> a e. CC ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> a e. CC ) |
| 26 | 25 16 18 | divcan4d | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( a x. C ) / C ) = a ) |
| 27 | zcn | |- ( b e. ZZ -> b e. CC ) |
|
| 28 | 27 | 3ad2ant2 | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> b e. CC ) |
| 29 | 28 16 18 | divcan4d | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( b x. C ) / C ) = b ) |
| 30 | 26 29 | oveq12d | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( ( a x. C ) / C ) gcd ( ( b x. C ) / C ) ) = ( a gcd b ) ) |
| 31 | 19 23 30 | 3eqtr4d | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( ( a x. C ) gcd ( b x. C ) ) / C ) = ( ( ( a x. C ) / C ) gcd ( ( b x. C ) / C ) ) ) |
| 32 | oveq12 | |- ( ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( a x. C ) gcd ( b x. C ) ) = ( A gcd B ) ) |
|
| 33 | 32 | oveq1d | |- ( ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( ( a x. C ) gcd ( b x. C ) ) / C ) = ( ( A gcd B ) / C ) ) |
| 34 | oveq1 | |- ( ( a x. C ) = A -> ( ( a x. C ) / C ) = ( A / C ) ) |
|
| 35 | oveq1 | |- ( ( b x. C ) = B -> ( ( b x. C ) / C ) = ( B / C ) ) |
|
| 36 | 34 35 | oveqan12d | |- ( ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( ( a x. C ) / C ) gcd ( ( b x. C ) / C ) ) = ( ( A / C ) gcd ( B / C ) ) ) |
| 37 | 33 36 | eqeq12d | |- ( ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( ( ( a x. C ) gcd ( b x. C ) ) / C ) = ( ( ( a x. C ) / C ) gcd ( ( b x. C ) / C ) ) <-> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) ) |
| 38 | 31 37 | syl5ibcom | |- ( ( a e. ZZ /\ b e. ZZ /\ C e. NN ) -> ( ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) ) |
| 39 | 38 | 3expa | |- ( ( ( a e. ZZ /\ b e. ZZ ) /\ C e. NN ) -> ( ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) ) |
| 40 | 39 | expcom | |- ( C e. NN -> ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) ) ) |
| 41 | 40 | rexlimdvv | |- ( C e. NN -> ( E. a e. ZZ E. b e. ZZ ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( E. a e. ZZ E. b e. ZZ ( ( a x. C ) = A /\ ( b x. C ) = B ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) ) |
| 43 | 11 42 | sylbid | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( ( C || A /\ C || B ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) ) |
| 44 | 43 | imp | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ ( C || A /\ C || B ) ) -> ( ( A gcd B ) / C ) = ( ( A / C ) gcd ( B / C ) ) ) |