This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse distribution law for the gcd operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgcdr | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( A x. C ) gcd ( B x. C ) ) = ( ( A gcd B ) x. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgcd | |- ( ( C e. NN0 /\ A e. ZZ /\ B e. ZZ ) -> ( ( C x. A ) gcd ( C x. B ) ) = ( C x. ( A gcd B ) ) ) |
|
| 2 | 1 | 3coml | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( C x. A ) gcd ( C x. B ) ) = ( C x. ( A gcd B ) ) ) |
| 3 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> A e. CC ) |
| 5 | nn0cn | |- ( C e. NN0 -> C e. CC ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> C e. CC ) |
| 7 | 4 6 | mulcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( A x. C ) = ( C x. A ) ) |
| 8 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> B e. CC ) |
| 10 | 9 6 | mulcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( B x. C ) = ( C x. B ) ) |
| 11 | 7 10 | oveq12d | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( A x. C ) gcd ( B x. C ) ) = ( ( C x. A ) gcd ( C x. B ) ) ) |
| 12 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 13 | 12 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd B ) e. NN0 ) |
| 14 | 13 | nn0cnd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd B ) e. CC ) |
| 15 | 14 6 | mulcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd B ) x. C ) = ( C x. ( A gcd B ) ) ) |
| 16 | 2 11 15 | 3eqtr4d | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN0 ) -> ( ( A x. C ) gcd ( B x. C ) ) = ( ( A gcd B ) x. C ) ) |